This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274710 #26 Mar 27 2020 06:57:42 %S A274710 1,1,0,2,0,0,6,0,2,2,2,0,0,6,12,12,0,2,4,8,4,2,0,0,6,24,52,40,18,0,2, %T A274710 6,18,18,18,6,2,0,0,6,36,120,180,180,84,24,0,2,8,32,48,72,48,32,8,2,0, %U A274710 0,6,48,216,480,744,672,432,144,30,0,2,10,50,100,200,200,200,100,50,10,2 %N A274710 A statistic on orbital systems over n sectors: the number of orbitals which make k turns. %C A274710 The definition of an orbital system is given in A232500 (see also the illustration there). The number of orbitals over n sectors is counted by the swinging factorial A056040. %C A274710 A 'turn' of an orbital w takes place where signum(w[i]) is not equal to signum(w[i+1]). %C A274710 A152659 is a subtriangle. %H A274710 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/Orbitals">Orbitals</a> %F A274710 For even n>0: T(n,k) = 2*C(n/2-1,(k-1+mod(k-1,2))/2)*C(n/2-1,(k-1-mod(k-1,2))/2) for k=0..n-1 (from A152659). %e A274710 Triangle read by rows, n>=0. The length of row n is n for n>=1. %e A274710 [n] [k=0,1,2,...] [row sum] %e A274710 [0] [1] 1 %e A274710 [1] [1] 1 %e A274710 [2] [0, 2] 2 %e A274710 [3] [0, 0, 6] 6 %e A274710 [4] [0, 2, 2, 2] 6 %e A274710 [5] [0, 0, 6, 12, 12] 30 %e A274710 [6] [0, 2, 4, 8, 4, 2] 20 %e A274710 [7] [0, 0, 6, 24, 52, 40, 18] 140 %e A274710 [8] [0, 2, 6, 18, 18, 18, 6, 2] 70 %e A274710 [9] [0, 0, 6, 36, 120, 180, 180, 84, 24] 630 %e A274710 T(5,2) = 6 because the six orbitals [-1, -1, 0, 1, 1], [-1, -1, 1, 1, 0], [0, -1, -1, 1, 1], [0, 1, 1, -1, -1], [1, 1, -1, -1, 0], [1, 1, 0, -1, -1] make 2 turns. %o A274710 (Sage) # uses[unit_orbitals from A274709] %o A274710 # Brute force counting %o A274710 def orbital_turns(n): %o A274710 if n == 0: return [1] %o A274710 S = [0]*(n) %o A274710 for u in unit_orbitals(n): %o A274710 L = sum(0 if sgn(u[i]) == sgn(u[i+1]) else 1 for i in (0..n-2)) %o A274710 S[L] += 1 %o A274710 return S %o A274710 for n in (0..12): print(orbital_turns(n)) %Y A274710 Cf. A056040 (row sum), A152659, A232500. %Y A274710 Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (number of peaks), A274709 (max. height), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent). %K A274710 nonn,tabf %O A274710 0,4 %A A274710 _Peter Luschny_, Jul 10 2016