This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274712 #12 Jul 06 2016 03:04:44 %S A274712 1,5,161,14575,2671669,833607138,397984073059,270609861663900, %T A274712 248922595132336125,298037055910658382175,450755158919281716609746, %U A274712 840770855566250627155136090,1896671776639253430025972662743,5091278095597325836977485757711800,16040729445423172146341201903726496024,58625927208516621021861960954787323034320,246047331971247756894582227572712664877434765,1175344062721738572130662103242054758238706829325 %N A274712 a(n) = A008277(3*n-1,n) / (n*(n+1)/2) for n>=1, where A008277 are the Stirling numbers of the second kind. %H A274712 Paul D. Hanna, <a href="/A274712/b274712.txt">Table of n, a(n) for n = 1..100</a> %F A274712 a(n) = A274713(n) / (n*(n+1)/2), where A274713(n) is the number of partitions of a {3*n-1}-set into n nonempty subsets. %F A274712 a(n) = 1/n! * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * k^(3*n-1) / (n*(n+1)/2). %F A274712 a(n) ~ sqrt(2) * 3^(3*n-1) * n^(2*n-7/2) / (exp(2*n) * c^n * (3-c)^(2*n-1) * sqrt(Pi*(1-c))), where c = -LambertW(-3*exp(-3)) = 0.1785606278779211... = -A226750. - _Vaclav Kotesovec_, Jul 06 2016 %o A274712 (PARI) {a(n) = polcoeff( 1/prod(k=1, n, 1-k*x +x*O(x^(2*n))), 2*n-1) / (n*(n+1)/2)} %o A274712 for(n=1, 20, print1(a(n), ", ")) %o A274712 (PARI) {a(n) = abs( stirling(3*n-1, n, 2) / (n*(n+1)/2) )} %o A274712 for(n=1, 20, print1(a(n), ", ")) %o A274712 (PARI) {a(n) = 1/n! * sum(k=0, n, (-1)^(n-k) * binomial(n, k) * k^(3*n-1)) / (n*(n+1)/2)} %o A274712 for(n=1, 20, print1(a(n), ", ")) %Y A274712 Cf. A274713. %K A274712 nonn %O A274712 1,2 %A A274712 _Paul D. Hanna_, Jul 03 2016