This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274721 #44 Jul 15 2016 21:38:29 %S A274721 1,7,57,182,2057,1068,32318,110443,280182,3626068,23157318,120813568, %T A274721 123327057,1097376068,11109655182,49925501068,407838170807, %U A274721 355101282318,3459595983307,15613890344818,365855836217682,110981321985443,2273204469030182,9647724486047943 %N A274721 a(n) is the least k such that A051903(k^2+1) = n. %C A274721 Least k such that the largest exponent of a prime in the factorization of k^2+1 is n. %C A274721 Conjecture: for each n > 1, a(n) = A034939(n) or 5^n - A034939(n). %C A274721 For any n > 1, -1 has two square roots mod 5^n; at least one of these is not a square root of -1 mod 5^(n+1). If v is this number, v < 5^n so v^2 < 25^n. v^2+1 might be divisible by p^(n+1) for p = 13 or 17, or a square root of -1 mod 13^n or 17^n might be smaller than v, but that seems very unlikely. Thus the conjecture. %H A274721 Robert Israel, <a href="/A274721/b274721.txt">Table of n, a(n) for n = 1..109</a> %e A274721 1^2 + 1 = 2. %e A274721 7^2 + 1 = 2*5^2. %e A274721 57^2 + 1 = 2*5^3*13. %e A274721 182^2 + 1 = 5^4 * 53. %p A274721 F:= proc(n) local v, p,w; %p A274721 v:= numtheory:-msqrt(-1,5^n); %p A274721 v:= min(v, 5^n-v); %p A274721 if max(seq(t[2],t=ifactors(v^2+1)[2])) > n then %p A274721 v:= 5^n - v; %p A274721 if max(seq(t[2],t=ifactors(v^2+1)[2])) > n then %p A274721 error "neither %d nor %d works",5^n-v,v fi %p A274721 fi; %p A274721 for p from 13 by 4 while p^n <= v^2+1 do %p A274721 if isprime(p) then %p A274721 w:= numtheory:-msqrt(-1,p^n); %p A274721 w:= min(w, p^n-w); %p A274721 if w < v then %p A274721 if max(seq(t[2],t=ifactors(w^2+1)[2])) = n then %p A274721 v:= w; %p A274721 fi %p A274721 fi %p A274721 fi %p A274721 od; %p A274721 v %p A274721 end proc: %p A274721 F(1):= 1: %p A274721 map(F, [$1..100]); %Y A274721 Cf. A034939, A051903. %K A274721 nonn %O A274721 1,2 %A A274721 _Robert Israel_, Jul 14 2016