A274723 Number of n X 3 0..2 arrays with no element equal to any value at offset (-1,-2) (-2,-1) or (-1,0) and new values introduced in order 0..2.
5, 24, 68, 260, 1040, 4132, 16524, 66088, 264332, 1057316, 4229264, 16917028, 67668108, 270672424, 1082689676, 4330758692, 17323034768, 69292139044, 277168556172, 1108674224680, 4434696898700, 17738787594788, 70955150379152
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0. .0..0..0. .0..1..0. .0..1..0. .0..1..0. .0..1..0. .0..1..0 ..1..0..1. .1..1..1. .1..0..1. .2..0..2. .2..0..2. .1..2..1. .1..2..1 ..0..1..2. .2..2..2. .2..1..0. .0..1..0. .1..2..0. .2..1..2. .2..1..2 ..1..2..1. .0..0..0. .0..0..1. .2..0..2. .0..0..2. .0..2..0. .1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A274728.
Formula
Empirical: a(n) = 3*a(n-1) + 4*a(n-2) + a(n-3) - 3*a(n-4) - 4*a(n-5) for n>7.
Empirical g.f.: x*(5 + 9*x - 24*x^2 - 45*x^3 - 21*x^4 - 4*x^5 + 8*x^6) / ((1 - x)*(1 + x)*(1 - 4*x)*(1 + x + x^2)). - Colin Barker, Jan 30 2019