cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274740 Table of coefficients in the iterations of Euler's tree function (A000169), as read by antidiagonals.

This page as a plain text file.
%I A274740 #9 Jul 05 2016 13:01:49
%S A274740 1,0,1,0,2,1,0,9,4,1,0,64,30,6,1,0,625,332,63,8,1,0,7776,4880,948,108,
%T A274740 10,1,0,117649,89742,18645,2056,165,12,1,0,2097152,1986124,454158,
%U A274740 50680,3800,234,14,1,0,43046721,51471800,13221075,1537524,112625,6324,315,16,1,0,1000000000,1530489744,448434136,55494712,4090980,219000,9772,408,18,1,0,25937424601,51395228090,17386204761,2325685632,176238685,9266706,387205,14288,513,20,1
%N A274740 Table of coefficients in the iterations of Euler's tree function (A000169), as read by antidiagonals.
%C A274740 See examples and formulas at A274390, which is the main entry for this table.
%C A274740 This entry is the same as table A274390, but read by antidiagonals from top down.
%F A274740 See formulas at A274390, which is the main entry for this table.
%e A274740 See examples at A274390, which is the main entry for this table.
%e A274740 This table begins:
%e A274740 1,  0,   0,     0,       0,        0,          0, ...;
%e A274740 1,  2,   9,    64,     625,     7776,     117649, ...;
%e A274740 1,  4,  30,   332,    4880,    89742,    1986124, ...;
%e A274740 1,  6,  63,   948,   18645,   454158,   13221075, ...;
%e A274740 1,  8, 108,  2056,   50680,  1537524,   55494712, ...;
%e A274740 1, 10, 165,  3800,  112625,  4090980,  176238685, ...;
%e A274740 1, 12, 234,  6324,  219000,  9266706,  463975764, ...;
%e A274740 1, 14, 315,  9772,  387205, 18704322, 1067280319, ...;
%e A274740 1, 16, 408, 14288,  637520, 34617288, 2217367600, ...;
%e A274740 ...
%e A274740 This table may also be written as a triangle:
%e A274740 1;
%e A274740 0, 1;
%e A274740 0, 2, 1;
%e A274740 0, 9, 4, 1;
%e A274740 0, 64, 30, 6, 1;
%e A274740 0, 625, 332, 63, 8, 1;
%e A274740 0, 7776, 4880, 948, 108, 10, 1;
%e A274740 0, 117649, 89742, 18645, 2056, 165, 12, 1;
%e A274740 0, 2097152, 1986124, 454158, 50680, 3800, 234, 14, 1;
%e A274740 0, 43046721, 51471800, 13221075, 1537524, 112625, 6324, 315, 16, 1;
%e A274740 0, 1000000000, 1530489744, 448434136, 55494712, 4090980, 219000, 9772, 408, 18, 1, 0;
%e A274740 ...
%o A274740 (PARI) {ITERATE(F, n, k) = my(G=x +x*O(x^k)); for(i=1, n, G=subst(G, x, F)); G}
%o A274740 {T(n, k) = my(TREE = serreverse(x*exp(-x +x*O(x^k)))); k!*polcoeff(ITERATE(TREE, n, k), k)}
%o A274740 /* Print this table as a rectangular array */
%o A274740 for(n=0, 10, for(k=1, 10, print1(T(n, k), ", ")); print(""))
%o A274740 /* Print this table as a triangle */
%o A274740 for(n=1, 12, for(k=0, n-1, print1(T(k, n-k), ", "));print("") )
%o A274740 /* Print this table as a flattened array */
%o A274740 for(n=0, 12, for(k=0, n-1, print1(T(k, n-k), ", ")); )
%Y A274740 Cf. A274390.
%K A274740 nonn,tabl
%O A274740 0,5
%A A274740 _Paul D. Hanna_, Jul 04 2016