cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274746 Number of n X 5 0..2 arrays with no element equal to any value at offset (-1,-2) (0,-1) or (-1,0) and new values introduced in order 0..2.

Original entry on oeis.org

8, 60, 518, 4554, 40242, 355504, 3140840, 27748676, 245154340, 2165891856, 19135242632, 169056228008, 1493579612136, 13195491722256, 116579658950800, 1029959107782112, 9099492769592768, 80392287459022000, 710250565228311920
Offset: 1

Views

Author

R. H. Hardin, Jul 04 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..0..2..0. .0..1..0..1..2. .0..1..0..2..1. .0..1..2..1..2
..2..0..1..0..2. .2..0..2..0..1. .1..0..2..0..2. .1..2..1..0..1
..0..2..0..1..0. .0..2..0..1..0. .0..1..0..2..1. .2..1..2..1..0
..1..0..1..0..2. .2..1..2..0..1. .1..0..2..0..2. .1..0..1..0..1
		

Crossrefs

Column 5 of A274749.

Formula

Empirical: a(n) = 9*a(n-1) - 14*a(n-3) + 10*a(n-4) - 2*a(n-5) for n>6.
Empirical g.f.: 2*x*(4 - 6*x - 11*x^2 + 2*x^3 + 8*x^4 - 3*x^5) / (1 - 9*x + 14*x^3 - 10*x^4 + 2*x^5). - Colin Barker, Jan 30 2019