A274754 Number of 7Xn 0..2 arrays with no element equal to any value at offset (-1,-2) (0,-1) or (-1,0) and new values introduced in order 0..2.
32, 729, 10946, 185435, 3140840, 53680592, 920432562, 15806543610, 271711836855, 4671914239590, 80354505513874, 1382068876451987, 23773417216542030, 408926400535170333, 7034177852486985161, 120997474917708497554
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..1. .0..1..0..2. .0..1..0..2. .0..1..0..1. .0..1..0..1 ..1..2..1..0. .2..0..1..0. .2..0..1..0. .2..0..1..2. .1..2..1..2 ..2..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .2..1..0..1 ..1..0..1..2. .2..0..2..0. .1..0..2..0. .1..2..1..0. .0..2..1..2 ..0..1..2..1. .1..2..0..1. .0..1..0..1. .0..1..2..1. .1..0..2..0 ..1..0..1..0. .0..1..2..0. .1..2..1..2. .1..0..1..2. .0..1..0..2 ..2..1..2..1. .2..0..1..2. .2..0..2..1. .0..1..2..1. .2..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- R. H. Hardin, Empirical recurrence of order 80
Crossrefs
Cf. A274749.
Formula
Empirical recurrence of order 80 (see link above)
Comments