cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274774 Least k such that sigma(k*n)/tau(k*n) = sigma(k*n+1)/tau(k*n+1), or 0 if no such k exists.

Original entry on oeis.org

5, 7, 895, 1363, 1, 3353, 2, 2589, 1007, 10341, 1265, 1726, 7, 1, 179, 6634, 10052, 5745, 86, 53389, 958, 12165, 58, 863, 649, 250017, 2395, 6103, 46, 3447, 2714, 3317, 8110, 5026, 22653, 2812637, 94, 43, 16795, 58069, 61693, 479, 38, 52790, 1437, 29, 74, 2027510, 122367, 70545
Offset: 1

Views

Author

Altug Alkan, Jul 28 2016

Keywords

Comments

Corresponding averages are 3, 6, 540, 840, 3, 2880, 6, 3240, 1170, 8640, 1596, 3240, 28, 6, 540, 9072, 15120, 8640, 330, 55440, 2880, 21924, 270, 3240, 1860, 875070, 7200, ...

Examples

			a(13) = 7 because sigma(7*13)/tau(7*13) = sigma(7*13+1)/tau(7*13+1).
		

Crossrefs

Cf. A238380.

Programs

  • Mathematica
    a[n_] := Block[{k=1}, While[! Equal @@ (DivisorSigma[1, n*k + {0,1}] / DivisorSigma[ 0, n*k + {0,1}]), k++]; k]; Array[a, 20] (* Giovanni Resta, Jul 28 2016 *)
  • PARI
    a(n) = {my(k=1); while (sigma(k*n)/numdiv(k*n) != sigma(k*n+1)/numdiv(k*n+1), k++); k; }