A274774 Least k such that sigma(k*n)/tau(k*n) = sigma(k*n+1)/tau(k*n+1), or 0 if no such k exists.
5, 7, 895, 1363, 1, 3353, 2, 2589, 1007, 10341, 1265, 1726, 7, 1, 179, 6634, 10052, 5745, 86, 53389, 958, 12165, 58, 863, 649, 250017, 2395, 6103, 46, 3447, 2714, 3317, 8110, 5026, 22653, 2812637, 94, 43, 16795, 58069, 61693, 479, 38, 52790, 1437, 29, 74, 2027510, 122367, 70545
Offset: 1
Keywords
Examples
a(13) = 7 because sigma(7*13)/tau(7*13) = sigma(7*13+1)/tau(7*13+1).
Crossrefs
Cf. A238380.
Programs
-
Mathematica
a[n_] := Block[{k=1}, While[! Equal @@ (DivisorSigma[1, n*k + {0,1}] / DivisorSigma[ 0, n*k + {0,1}]), k++]; k]; Array[a, 20] (* Giovanni Resta, Jul 28 2016 *)
-
PARI
a(n) = {my(k=1); while (sigma(k*n)/numdiv(k*n) != sigma(k*n+1)/numdiv(k*n+1), k++); k; }
Comments