This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274796 #13 Jan 10 2025 12:10:37 %S A274796 1,2,4,5,8,16,20,32,64,80,128,186,256,320,512,704,1024,1280,1344,2048, %T A274796 3808,4096,5090,5120,6464,8192,10152,15904,16384,20480,21760,28672, %U A274796 32768,34640,59392,62132,65536,81920,106496,131072,138880,217824,262144,327680 %N A274796 Numbers n such that s2/s1 is an integer, where s1 is the sum of the odd numbers and s2 is the sum of the even numbers in the Collatz (3x+1) iteration of n. %C A274796 Or numbers n such that A213909(n)/A213916(n) is an integer. %C A274796 The powers of 2 are in the sequence because s1 = 1. %C A274796 The corresponding integers s2/s1 are 0, 2, 6, 5, 14, 30, 10, 62, 126, 30, 254, 6, 510, 110, 1022, 34, 2046, 430, 126, 4094, 14, 8190, 6, 1710, 70, 16382, 14, 37, 32766, 6830, 510, 1066, 65534, 26, 1567,... The odd numbers are very rare: 5, 37, 1567,... %C A274796 The numbers of the form 5*2^2m for m = 0,1,.. are in the sequence because s1 = 6, s2 = (5*(2^(2m+1)-2)+ 30) ==0 (mod 6) => s2/s1 is an integer. %e A274796 5 is in the sequence because the Collatz trajectory of 5 is 5 -> 16 -> 8 -> 4 -> 2 -> 1 with s1 = 5+1 = 6 and s2 = 16 + 8 + 4 + 2 = 30 => 30/6 = 5 is an integer. %p A274796 T:=array(1..2000):U:=array(1..2000):nn:=350000: %p A274796 for n from 1 to nn do: %p A274796 kk:=1:m:=n:T[kk]:=n:it:=0: %p A274796 for i from 1 to nn while(m<>1) do: %p A274796 if irem(m,2)=0 %p A274796 then %p A274796 m:=m/2:kk:=kk+1:T[kk]:=m: %p A274796 else %p A274796 m:=3*m+1:kk:=kk+1:T[kk]:=m: %p A274796 fi: %p A274796 od: %p A274796 s1:=0:s2:=0: %p A274796 for j from 1 to kk do: %p A274796 if irem(T[j],2)=1 %p A274796 then %p A274796 s1:=s1+T[j]: %p A274796 else s2:=s2+T[j]: %p A274796 fi: %p A274796 od: %p A274796 if s1<>0 and floor(s2/s1)=s2/s1 %p A274796 then %p A274796 printf(`%d, `,n):else fi: %p A274796 od: %t A274796 coll[n_]:=NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&];a:=Select[coll[n],OddQ[#]&];b:=Select[coll[n],EvenQ[#]&];Do[s1=Sum[a[[i]],{i,1,Length[a]}];s2=Sum[b[[j]],{j,1,Length[b]}];If[IntegerQ[s2/s1],Print[n]],{n,1,350000}] %t A274796 s2s1Q[n_]:=Module[{coll=NestWhileList[If[EvenQ[#],#/2,3#+1]&,n,#>1&],s1,s2},s1=Total[ Select[ coll,OddQ]];s2=Total[Select[coll,EvenQ]];IntegerQ[s2/s1]]; Select[Range[330000],s2s1Q] (* _Harvey P. Dale_, Feb 26 2024 *) %o A274796 (PARI) isok(n) = {if (n % 2, s1 = n; s2 = 0, s2 = n; s1 = 0); while (n != 1, if (n % 2, n = 3*n+1, n /= 2); if (n % 2, s1 += n, s2 +=n);); s2 % s1 == 0;} \\ _Michel Marcus_, Jul 09 2016 %Y A274796 Cf. A213909, A213916. %K A274796 nonn %O A274796 1,2 %A A274796 _Michel Lagneau_, Jul 07 2016