A274803 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-1,-2) (-2,-1) (0,-1) or (-1,0) and new values introduced in order 0..2.
1, 1, 1, 2, 3, 2, 4, 8, 8, 4, 8, 22, 30, 22, 8, 16, 60, 112, 112, 60, 16, 32, 164, 420, 596, 420, 164, 32, 64, 448, 1572, 3104, 3104, 1572, 448, 64, 128, 1224, 5888, 16328, 22988, 16328, 5888, 1224, 128, 256, 3344, 22048, 85504, 169328, 169328, 85504, 22048, 3344
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..0..2. .0..1..2..0. .0..1..2..1. .0..1..2..1. .0..1..0..1 ..1..2..1..0. .1..0..1..2. .1..2..1..2. .1..0..1..0. .1..0..1..2 ..0..1..0..1. .0..1..2..1. .2..1..0..1. .2..1..2..1. .0..1..2..1 ..2..0..1..2. .1..0..1..0. .1..2..1..0. .0..2..1..0. .1..2..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..449
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 2*a(n-1) +2*a(n-2)
k=3: a(n) = 2*a(n-1) +6*a(n-2) +2*a(n-3)
k=4: a(n) = 2*a(n-1) +15*a(n-2) +11*a(n-3) -2*a(n-4) -2*a(n-5)
k=5: a(n) = 2*a(n-1) +35*a(n-2) +42*a(n-3) -41*a(n-4) -60*a(n-5) -23*a(n-6) -2*a(n-7)
k=6: [order 14] for n>15
k=7: [order 25] for n>26
Comments