cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274808 Numbers n such that n and n+1 both have 34 divisors.

This page as a plain text file.
%I A274808 #4 Jul 08 2016 00:15:19
%S A274808 2035980763136,218010592018431,413918027251712,921717810593792,
%T A274808 957141387771903,1017635547447296,1119195504115712,1842969898713087,
%U A274808 2057374251679743,2435402979278847,2913421405257728,3039120499474431,3129396016513023
%N A274808 Numbers n such that n and n+1 both have 34 divisors.
%H A274808 Charles R Greathouse IV, <a href="/A274808/b274808.txt">Table of n, a(n) for n = 1..10000</a>
%o A274808 (PARI) is(n)=numdiv(n)==34 && numdiv(n+1)==34
%o A274808 (PARI) has(n)=if(n%4==2, ispower(n/2, 16, &n) && isprime(n), bitand(n, 131071)==65536 && isprime(n>>16) && n>65536) \\ check if n is even with 34 divisors
%o A274808 list(lim)=my(v=List(), t); forprime(p=2, sqrtnint(lim\=1, 33), t=p^33; if(has(t+1), listput(v, t)); if(has(t-1), listput(v, t-1))); forprime(p=3, sqrtnint(lim\3, 16), my(p16=p^16); forprime(q=3, lim\p16, if(p==q, next); t=p16*q; if(has(t+1), listput(v, t)); if(has(t-1), listput(v, t-1)))); Set(v)
%Y A274808 Intersection of A005237 and A175744.
%K A274808 nonn
%O A274808 1,1
%A A274808 _Charles R Greathouse IV_, Jul 07 2016