This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274833 #13 Jul 25 2016 00:28:51 %S A274833 0,1,1208494,1358344,1415583,1538460,1734265,1773226,1818180,1994707, %T A274833 2155140,2187108,2208493,2215486,2272725,2272726,2311687,2318680, %U A274833 2351350,2356641,2358343,2363634,2390311,2402596,2420874,2449252,2454544,2459835,2481220,2500498,2533168 %N A274833 6-white numbers: partition digits of n^6 into blocks of 6 starting at right; sum of these 6-digit numbers equals n. %C A274833 Three pairs of consecutive terms: 2272725 and 2272726; 2999997 and 2999998; 3272724 and 3272725. %H A274833 Paolo P. Lava, <a href="/A274833/b274833.txt">Table of n, a(n) for n = 1..104</a> %e A274833 1208494^6 = 3115064124992224583219040254156270656 and 3 + 115064 + 124992 + 224583 + 219040 + 254156 + 270656 = 1208494. %p A274833 P:=proc(q,h) local a,b,n; %p A274833 for n from 0 to q do a:=n^h; b:=0; while a>0 do b:=b+(a mod 10^h); a:=trunc(a/10^h); od; %p A274833 if n=b then print(n); fi; od; end: P(10^6,6); %t A274833 k = 6; Select[Range[0, 10^7], Function[n, Total[FromDigits /@ Partition[PadLeft[#, Length@ # + k - Mod[Length@ #, k]], k]] == n &@ IntegerDigits[n^k]]] (* _Michael De Vlieger_, Jul 08 2016, after _Harvey P. Dale_ at A037045 *) %Y A274833 Cf. A037042-A037045, A274834. %K A274833 nonn,base,fini,full %O A274833 1,3 %A A274833 _Paolo P. Lava_, Jul 08 2016