This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274845 #13 Aug 08 2016 23:50:01 %S A274845 1,0,1,1,1,1,3,3,7,3,13,13,25,13,51,51,103,51,205,205,409,205,819,819, %T A274845 1639,819,3277,3277,6553,3277,13107,13107,26215,13107,52429,52429, %U A274845 104857,52429,209715,209715,419431,209715,838861,838861,1677721,838861,3355443 %N A274845 a(0)=1, a(1)=0, a(4n+2) = a(4n+3) = a(4n+5) = (4^(n+1) +(-1)^n)/5, a(4n+4) = (2*4^(n+1) -3*(-1)^n)/5. %C A274845 Antidiagonals of the array in A274613 written as a triangle: %C A274845 1, %C A274845 0, 1/2, %C A274845 0, 1/2, 1/4, %C A274845 0, 0, 1/2, 1/8, %C A274845 0, 0, 1/4, 3/8, 1/16, %C A274845 ... . %C A274845 a(n) is the numerators of the antidiagonal sums i.e. 1, 0, 1/2, 1/2, 1/4, 1/2, 3/8, 3/8, 7/16, 3/8, 13/32, 13/32, 25/64, 13/32, ... = a(n)/b(n). %C A274845 The denominators b(n) are A173300(n). %C A274845 a(0)+a(1) = 1, a(4n+2) +a(4n+3) +a(4n+4) +a(4n+5) = 4, 16, 64, 256, ... . %H A274845 Colin Barker, <a href="/A274845/b274845.txt">Table of n, a(n) for n = 0..1000</a> %H A274845 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 3, 0, 0, 0, 4). %F A274845 a(4n) = A102900(n), a(4n+1) = A015521(n), a(4n+2) = a(4n+3) = A015521(n+1). %F A274845 a(n) = 3*a(n-4) + 4*a(n-8). - _G. C. Greubel_, Jul 08 2016 %F A274845 G.f.: (1+x^2+x^3-2*x^4+x^5) / ((1-2*x^2)*(1+2*x^2)*(1+x^4)). - _Colin Barker_, Jul 22 2016 %t A274845 LinearRecurrence[{0,0,0,3,0,0,0,4}, {1,0,1,1,1,1,3,3}, 50] (* _G. C. Greubel_, Jul 08 2016 *) %o A274845 (PARI) Vec((1+x^2+x^3-2*x^4+x^5)/((1-2*x^2)*(1+2*x^2)*(1+x^4)) + O(x^60)) \\ _Colin Barker_, Jul 22 2016 %Y A274845 Cf. A000302, A102900, A015521, A173300, A274613. %K A274845 nonn,easy %O A274845 0,7 %A A274845 _Paul Curtz_, Jul 08 2016 %E A274845 More terms from _Colin Barker_, Jul 22 2016