A274878 A statistic on orbital systems over n sectors: the number of orbitals with span k.
1, 1, 0, 2, 0, 6, 0, 2, 4, 0, 10, 20, 0, 2, 12, 6, 0, 14, 84, 42, 0, 2, 28, 32, 8, 0, 18, 252, 288, 72, 0, 2, 60, 120, 60, 10, 0, 22, 660, 1320, 660, 110, 0, 2, 124, 390, 300, 96, 12, 0, 26, 1612, 5070, 3900, 1248, 156, 0, 2, 252, 1176, 1260, 588, 140, 14
Offset: 0
Examples
Triangle read by rows, n>=0. The length of row n is floor((n+2)/2). [ n] [k=0,1,2,...] [row sum] [ 0] [1] 1 [ 1] [1] 1 [ 2] [0, 2] 2 [ 3] [0, 6] 6 [ 4] [0, 2, 4] 6 [ 5] [0, 10, 20] 30 [ 6] [0, 2, 12, 6] 20 [ 7] [0, 14, 84, 42] 140 [ 8] [0, 2, 28, 32, 8] 70 [ 9] [0, 18, 252, 288, 72] 630 [10] [0, 2, 60, 120, 60, 10] 252 T(6, 3) = 6 because the span of the following six orbitals is 3: [-1, -1, -1, 1, 1, 1], [-1, -1, 1, 1, 1, -1], [-1, 1, 1, 1, -1, -1], [1, -1, -1, -1, 1, 1], [1, 1, -1, -1, -1, 1], [1, 1, 1, -1, -1, -1].
Links
- Peter Luschny, Orbitals
Crossrefs
Programs
-
Sage
# uses[unit_orbitals from A274709] from itertools import accumulate # Brute force counting. def orbital_span(n): if n == 0: return [1] S = [0]*((n+2)//2) for u in unit_orbitals(n): L = list(accumulate(u)) S[max(L) - min(L)] += 1 return S for n in (0..10): print(orbital_span(n))
Comments