A274879 A statistic on orbital systems over n sectors: the number of orbitals with k returns.
1, 1, 2, 2, 4, 2, 4, 6, 12, 12, 4, 8, 8, 20, 40, 48, 32, 10, 20, 24, 16, 70, 140, 180, 160, 80, 28, 56, 72, 64, 32, 252, 504, 672, 672, 480, 192, 84, 168, 224, 224, 160, 64, 924, 1848, 2520, 2688, 2240, 1344, 448, 264, 528, 720, 768, 640, 384, 128
Offset: 0
Examples
Triangle read by rows, n>=0. The length of row n is floor((n+1)/2) for n>=1. [ n] [k=0,1,2,...] [row sum] [ 0] [1] 1 [ 1] [1] 1 [ 2] [2] 2 [ 3] [2, 4] 6 [ 4] [2, 4] 6 [ 5] [6, 12, 12] 30 [ 6] [4, 8, 8] 20 [ 7] [20, 40, 48, 32] 140 [ 8] [10, 20, 24, 16] 70 [ 9] [70, 140, 180, 160, 80] 630 [10] [28, 56, 72, 64, 32] 252 [11] [252, 504, 672, 672, 480, 192] 2772 T(6,0) = 4 because the following 4 orbitals stay above or below the central circle: [-1, -1, -1, 1, 1, 1], [-1, -1, 1, -1, 1, 1], [1, 1, -1, 1, -1, -1], [1, 1, 1, -1, -1, -1].
Links
- Peter Luschny, Orbitals
Crossrefs
Programs
-
Sage
# uses[unit_orbitals from A274709] from itertools import accumulate # Brute force counting def orbital_returns(n): if n == 0: return [1] S = [0]*((n+1)//2) for u in unit_orbitals(n): L = list(accumulate(u)) Z = len(list(filter(lambda z: z == 0, L))) S[Z-1] += 1 # exclude origin return S for n in (0..10): print(orbital_returns(n))
Formula
For even n>0: T(n,k) = 2^(k+1)*(k+1)*binomial(n-k-1,n/2)/(n-k-1) for k=0..n/2-1 (from A108747).
Comments