A274881 A statistic on orbital systems over n sectors: the number of orbitals which have an ascent of length k.
1, 1, 0, 2, 0, 6, 0, 3, 3, 0, 18, 12, 0, 4, 12, 4, 0, 40, 80, 20, 0, 5, 40, 20, 5, 0, 75, 375, 150, 30, 0, 6, 120, 90, 30, 6, 0, 126, 1470, 882, 252, 42, 0, 7, 350, 371, 147, 42, 7, 0, 196, 5292, 4508, 1568, 392, 56, 0, 8, 1008, 1456, 672, 224, 56, 8
Offset: 0
Examples
Triangle read by rows, n>=0. The length of row n is floor((n+2)/2). [ n] [k=0,1,2,...] [row sum] [ 0] [1] 1 [ 1] [1] 1 [ 2] [0, 2] 2 [ 3] [0, 6] 6 [ 4] [0, 3, 3] 6 [ 5] [0, 18, 12] 30 [ 6] [0, 4, 12, 4] 20 [ 7] [0, 40, 80, 20] 140 [ 8] [0, 5, 40, 20, 5] 70 [ 9] [0, 75, 375, 150, 30] 630 [10] [0, 6, 120, 90, 30, 6] 252 [11] [0, 126, 1470, 882, 252, 42] 2772 [12] [0, 7, 350, 371, 147, 42, 7] 924 T(6,3) = 4 because four orbitals over six sectors have a maximal up-run of length 3. [-1,-1,-1,1,1,1], [-1,-1,1,1,1,-1], [-1,1,1,1,-1,-1], [1,1,1,-1,-1,-1].
Links
- Peter Luschny, Orbitals
Crossrefs
Programs
-
Sage
# uses[unit_orbitals from A274709] # Brute force counting def orbital_ascent(n): if n < 2: return [1] S = [0]*((n+2)//2) for u in unit_orbitals(n): B = [0]*n for i in (0..n-1): B[i] = 0 if u[i] <= 0 else B[i-1] + u[i] S[max(B)] += 1 return S for n in (0..12): print(orbital_ascent(n))
Comments