A274884 Triangle read by rows, coefficients of q-polynomials representing the oscillating orbitals over n sectors as A274888(n) - 2*A274886(n), a q-analog of A232500.
-1, -1, -1, 1, -1, 0, 0, 1, -1, 1, 0, 1, 1, -1, 0, 0, 1, 2, 3, 2, 2, 1, -1, 1, 0, 1, 1, 3, 1, 2, 1, 1, -1, 0, 0, 1, 2, 5, 6, 9, 9, 10, 9, 8, 5, 4, 2, 1, -1, 1, 0, 1, 1, 3, 3, 5, 4, 5, 5, 5, 3, 3, 2, 1, 1
Offset: 0
Examples
The polynomials start: [0] -1 [1] -1 [2] q - 1 [3] (q - 1) * (q^2 + q + 1) [4] (q^2 + 1) * (q^2 + q - 1) [5] (q^2 + 1) * (q^2 + q - 1) * (q^4 + q^3 + q^2 + q + 1) [6] (q^2 - q + 1) * (q^3 + q^2 + q - 1) * (q^4 + q^3 + q^2 + q + 1) The table starts: [n] [k=0,1,2,...] [row sum] [0] [-1] -1 [1] [-1] -1 [2] [-1, 1] 0 [3] [-1, 0, 0, 1] 0 [4] [-1, 1, 0, 1, 1] 2 [5] [-1, 0, 0, 1, 2, 3, 2, 2, 1] 10 [6] [-1, 1, 0, 1, 1, 3, 1, 2, 1, 1] 10 [7] [-1, 0, 0, 1, 2, 5, 6, 9, 9, 10, 9, 8, 5, 4, 2, 1] 70 [8] [-1, 1, 0, 1, 1, 3, 3, 5, 4, 5, 5, 5, 3, 3, 2, 1, 1] 42
Links
- Peter Luschny, Orbitals
Programs
-
Maple
QOscOrbitals := proc(n) local h, p, P, F, C, S; P := x -> QDifferenceEquations:-QPochhammer(q,q,x); F := x -> QDifferenceEquations:-QFactorial(x,q); h := iquo(n,2): p := `if`(n::even,1-q,1); C := (p*P(n))/(P(h)*P(h+1)); S := F(n)/F(h)^2; expand(simplify(expand(S-2*C))); seq(coeff(%,q,j), j=0..degree(%)) end: seq(QOscOrbitals(n), n=0..8);
-
Sage
# uses[q_ext_catalan_number] # Function q_ext_catalan_number is in A274886. from sage.combinat.q_analogues import q_multinomial def q_osc_orbitals(n): return q_multinomial([n//2, n%2, n//2]) - 2*q_ext_catalan_number(n) for n in (0..9): print(q_osc_orbitals(n).list())
Comments