This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274886 #28 Mar 28 2020 11:00:47 %S A274886 1,1,1,1,1,1,1,0,1,1,1,2,2,2,1,1,1,0,1,1,1,0,1,1,1,2,3,4,4,5,4,4,3,2, %T A274886 1,1,1,0,1,1,2,1,2,1,2,1,1,0,1,1,1,2,3,5,6,8,9,11,11,12,11,11,9,8,6,5, %U A274886 3,2,1,1,1,0,1,1,2,2,3,2,4,3,4,3,4,2,3,2,2,1,1,0,1 %N A274886 Triangle read by rows, the q-analog of the extended Catalan numbers A057977. %C A274886 The q-analog of the extended Catalan numbers A057977 are univariate polynomials over the integers with degree floor((n+1)/2)*(floor((n+1)/2)-1)+1. %C A274886 The q-analog of the Catalan numbers are A129175. %C A274886 For a combinatorial interpretation in terms of the major index statistic of orbitals see A274888 and the link 'Orbitals'. %H A274886 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/Orbitals">Orbitals</a> %F A274886 q-extCatalan(n,q) = (p*P(n,q))/(P(h,q)*P(h+1,q)) with P(n,q) = q-Pochhammer(n,q), h = floor(n/2) and p = 1-q if n is even else 1. %e A274886 The polynomials start: %e A274886 [0] 1 %e A274886 [1] 1 %e A274886 [2] 1 %e A274886 [3] q^2 + q + 1 %e A274886 [4] q^2 + 1 %e A274886 [5] (q^2 + 1) * (q^4 + q^3 + q^2 + q + 1) %e A274886 [6] (q^2 - q + 1) * (q^4 + q^3 + q^2 + q + 1) %e A274886 The coefficients of the polynomials are: %e A274886 [ 0] [1] %e A274886 [ 1] [1] %e A274886 [ 2] [1] %e A274886 [ 3] [1, 1, 1] %e A274886 [ 4] [1, 0, 1] %e A274886 [ 5] [1, 1, 2, 2, 2, 1, 1] %e A274886 [ 6] [1, 0, 1, 1, 1, 0, 1] %e A274886 [ 7] [1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1] %e A274886 [ 8] [1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 1, 0, 1] %e A274886 [ 9] [1, 1, 2, 3, 5, 6, 8, 9, 11, 11, 12, 11, 11, 9, 8, 6, 5, 3, 2, 1, 1] %e A274886 [10] [1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 4, 2, 3, 2, 2, 1, 1, 0, 1] %p A274886 QExtCatalan := proc(n) local h, p, P; %p A274886 P := x -> QDifferenceEquations:-QPochhammer(q,q,x); %p A274886 h := iquo(n, 2): p := `if`(n::even, 1-q, 1); (p*P(n))/(P(h)*P(h+1)); %p A274886 expand(simplify(expand(%))); seq(coeff(%, q, j), j=0..degree(%)) end: %p A274886 seq(QExtCatalan(n, q), n=0..10); %t A274886 (* Function QBinom1 is defined in A274885. *) %t A274886 QExtCatalan[n_] := QBinom1[n] / QBinomial[n+1,1,q]; Table[CoefficientList[ QExtCatalan[n] // FunctionExpand,q], {n,0,10}] // Flatten %o A274886 (Sage) # uses[q_binom1 from A274885] %o A274886 from sage.combinat.q_analogues import q_int %o A274886 def q_ext_catalan_number(n): return q_binom1(n)//q_int(n+1) %o A274886 for n in (0..10): print([n], q_ext_catalan_number(n).list()) %o A274886 (Sage) # uses[unit_orbitals from A274709] %o A274886 # Brute force counting %o A274886 def catalan_major_index(n): %o A274886 S = [0]*(((n+1)//2)^2 + ((n+1) % 2) - (n//2)) %o A274886 for u in unit_orbitals(n): %o A274886 if any(x > 0 for x in accumulate(u)): continue # never rise above 0 %o A274886 L = [i+1 if u[i+1] < u[i] else 0 for i in (0..n-2)] %o A274886 # i+1 because u is 0-based whereas convention assumes 1-base. %o A274886 S[sum(L)] += 1 %o A274886 return S %o A274886 for n in (0..10): print(catalan_major_index(n)) %Y A274886 Cf. A057977, A129175, A274885, A274888. %K A274886 nonn,tabf %O A274886 0,12 %A A274886 _Peter Luschny_, Jul 20 2016