A274890 Number of n X 3 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.
2, 12, 16, 38, 84, 192, 436, 990, 2253, 5121, 11645, 26483, 60215, 136936, 311381, 708076, 1610154, 3661438, 8326047, 18933223, 43053720, 97903198, 222629593, 506254676, 1151211539, 2617828789, 5952883022, 13536720098, 30782192928
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0. .0..1..2. .0..1..2. .0..1..2. .0..1..2. .0..1..0. .0..1..2 ..2..1..2. .1..2..0. .0..1..0. .0..1..0. .1..2..0. .1..2..0. .0..1..2 ..1..0..2. .1..2..1. .1..2..0. .1..2..0. .1..2..0. .1..0..1. .1..2..0 ..1..0..1. .2..0..1. .2..0..1. .1..2..1. .2..0..1. .2..0..1. .1..2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A274895.
Formula
Empirical: a(n) = a(n-1) + 4*a(n-2) - 6*a(n-4) - a(n-5) + 4*a(n-6) - a(n-8) for n>10.
Empirical g.f.: x*(2 + 10*x - 4*x^2 - 26*x^3 - 6*x^4 + 30*x^5 + 8*x^6 - 18*x^7 - x^8 + 4*x^9) / ((1 - x)*(1 + x)*(1 - x - 3*x^2 - x^3 + 3*x^4 - x^6)). - Colin Barker, Jan 31 2019