cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274893 Number of nX6 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.

This page as a plain text file.
%I A274893 #4 Jul 10 2016 19:59:22
%S A274893 16,324,200,815,3064,12217,48269,191974,767905,3065418,12266783,
%T A274893 49117667,196547638,787292648,3152652324,12625267314,50570833189,
%U A274893 202532990424,811204807382,3249164512849,13013594658959,52124256901705
%N A274893 Number of nX6 0..2 arrays with no element equal to any value at offset (0,-1) (-1,-1) or (-2,0) and new values introduced in order 0..2.
%C A274893 Column 6 of A274895.
%H A274893 R. H. Hardin, <a href="/A274893/b274893.txt">Table of n, a(n) for n = 1..210</a>
%F A274893 Empirical: a(n) = a(n-1) +32*a(n-2) -496*a(n-4) -285*a(n-5) +4881*a(n-6) +4147*a(n-7) -34777*a(n-8) -31747*a(n-9) +193564*a(n-10) +159250*a(n-11) -877342*a(n-12) -559729*a(n-13) +3305202*a(n-14) +1371918*a(n-15) -10462555*a(n-16) -2038881*a(n-17) +28064748*a(n-18) -2573*a(n-19) -64372540*a(n-20) +10287733*a(n-21) +127544223*a(n-22) -35738974*a(n-23) -220567144*a(n-24) +79285065*a(n-25) +335987479*a(n-26) -133564456*a(n-27) -453839772*a(n-28) +180266595*a(n-29) +545461852*a(n-30) -199009384*a(n-31) -583472166*a(n-32) +180690849*a(n-33) +554326040*a(n-34) -134105374*a(n-35) -466206332*a(n-36) +79652731*a(n-37) +345892063*a(n-38) -35882573*a(n-39) -225652263*a(n-40) +10312807*a(n-41) +129040364*a(n-42) -882*a(n-43) -64456638*a(n-44) -2039779*a(n-45) +27988146*a(n-46) +1372306*a(n-47) -10489437*a(n-48) -560497*a(n-49) +3358044*a(n-50) +159731*a(n-51) -905008*a(n-52) -31875*a(n-53) +201297*a(n-54) +4160*a(n-55) -35960*a(n-56) -285*a(n-57) +4960*a(n-58) -496*a(n-60) +a(n-61) +32*a(n-62) -a(n-64) for n>66
%e A274893 Some solutions for n=4
%e A274893 ..0..1..2..0..2..0. .0..1..0..2..1..0. .0..1..0..1..2..1. .0..1..2..0..2..0
%e A274893 ..0..1..0..1..2..1. .2..1..2..1..0..2. .1..2..0..1..0..1. .0..1..2..1..2..0
%e A274893 ..1..2..0..2..0..1. .2..0..2..0..2..1. .1..2..1..2..0..2. .1..2..0..1..0..1
%e A274893 ..2..0..1..2..0..2. .1..0..1..0..2..0. .2..0..1..0..1..2. .2..0..1..2..0..1
%Y A274893 Cf. A274895.
%K A274893 nonn
%O A274893 1,1
%A A274893 _R. H. Hardin_, Jul 10 2016