cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274901 Number of (not necessarily proper) face colorings of the truncated cube using at most n colors.

This page as a plain text file.
%I A274901 #20 Sep 08 2022 08:46:17
%S A274901 1,554,109152,5747200,128538250,1640929626,14167981324,91769978112,
%T A274901 477063389475,2084653722250,7914860972876,26756396132544,
%U A274901 82046630783572,231537699283450,608260629969000,1501341920229376,3508131297671589,7809071314434282,16646760371737000
%N A274901 Number of (not necessarily proper) face colorings of the truncated cube using at most n colors.
%H A274901 Marko R. Riedel et al., <a href="http://math.stackexchange.com/questions/1854935/">Truncated objects coloring</a>, Mathematics Stack Exchange (Jul 10 2016).
%H A274901 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_cube">Truncated cube</a>
%F A274901 a(n) = 1/48*n^14 + 1/8*n^10 + 1/16*n^9 + 1/16*n^8 + 7/48*n^7 + 1/6*n^6 + 1/8*n^5 + 1/8*n^4 + 1/6*n^3 = n^3*(n + 1)*(n^10 - n^9 + n^8 - n^7 + 7*n^6 - 4*n^5 + 7*n^4 + 8*n^2 - 2*n + 8)/48.
%e A274901 Cycle index: 1/48*s[1]^14 + 1/8*s[1]^6*s[2]^4 + 1/16*s[2]^5*s[1]^4 + 1/16*s[2]^6*s[1]^2 + 7/48*s[2]^7 + 1/6*s[1]^2*s[3]^4 + 1/8*s[4]^3*s[1]^2 + 1/8*s[4]^3*s[2] + 1/6*s[6]^2*s[2].
%t A274901 Table[1/48 n^14 + 1/8 n^10 + 1/16 n^9 + 1/16 n^8 + 7/48 n^7 + 1/6 n^6 + 1/8 n^5 + 1/8 n^4 + 1/6 n^3, {n, 25}] (* _Vincenzo Librandi_, Jul 11 2016 *)
%o A274901 (Magma) [1/48*n^14+1/8*n^10+1/16*n^9+1/16*n^8+7/48*n^7+1/6*n^6+1/8*n^5+ 1/8*n^4+1/6*n^3: n in [1..20]]; // _Vincenzo Librandi_, Jul 11 2016
%Y A274901 Cf. A274900, A274902.
%K A274901 nonn,easy
%O A274901 1,2
%A A274901 _Marko Riedel_, Jul 10 2016