cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274902 Number of (not necessarily proper) edge colorings of the truncated cube using at most n colors.

This page as a plain text file.
%I A274902 #20 Sep 08 2022 08:46:17
%S A274902 1,1432071648,3126973271816997,98382635718348789760,
%T A274902 303164900659243306968750,214883849971608086273681376,
%U A274902 55244392622152479810398651758,6760803201218467969357600653312,469341657186247418838800529901095,20833333333333465916666833583500000
%N A274902 Number of (not necessarily proper) edge colorings of the truncated cube using at most n colors.
%H A274902 Marko R. Riedel et al., <a href="http://math.stackexchange.com/questions/1854935/">Truncated objects coloring</a>, Mathematics Stack Exchange (Jul 10 2016).
%H A274902 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_cube">Truncated cube</a>
%F A274902 a(n) = 1/48*n^36 + 1/8*n^21 + 1/16*n^20 + 1/8*n^19 + 1/12*n^18 + 1/6*n^12 + 1/4*n^9 + 1/6*n^6 = n^6*(n + 1)*(n^29 - n^28 + n^27 - n^26 + n^25 - n^24 + n^23 - n^22 + n^21 - n^20 + n^19 - n^18 + n^17 - n^16 + n^15 + 5*n^14 - 2*n^13 + 8*n^12 - 4*n^11 + 4*n^10 - 4*n^9 + 4*n^8 - 4*n^7 + 4*n^6 + 4*n^5 - 4 n^4 + 4*n^3 + 8*n^2 - 8*n + 8)/48.
%e A274902 Cycle index: 1/48*s[1]^36 + 1/8*s[2]^15*s[1]^6 + 1/16*s[2]^16*s[1]^4 + 1/8*s[2]^17*s[1]^2 + 1/12*s[2]^18 + 1/6*s[3]^12 + 1/4*s[4]^9 + 1/6*s[6]^6.
%t A274902 Table[1/48 n^36 + 1/8 n^21 + 1/16 n^20 + 1/8 n^19 + 1/12 n^18 + 1/6 n^12 + 1/4 n^9 + 1/6 n^6, {n, 25}] (* _Vincenzo Librandi_, Jul 11 2016 *)
%o A274902 (Magma) [1/48*n^36+1/8*n^21+1/16*n^20+1/8*n^19+1/12*n^18+1/6*n^12+1/4*n^9
%o A274902 +1/6*n^6: n in [1..20]]; // _Vincenzo Librandi_, Jul 11 2016
%Y A274902 Cf. A274900, A274901.
%K A274902 nonn,easy
%O A274902 1,2
%A A274902 _Marko Riedel_, Jul 10 2016