cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274912 Square array read by antidiagonals upwards in which each new term is the least nonnegative integer distinct from its neighbors.

This page as a plain text file.
%I A274912 #22 Nov 14 2016 17:24:15
%S A274912 0,1,2,0,3,0,1,2,1,2,0,3,0,3,0,1,2,1,2,1,2,0,3,0,3,0,3,0,1,2,1,2,1,2,
%T A274912 1,2,0,3,0,3,0,3,0,3,0,1,2,1,2,1,2,1,2,1,2,0,3,0,3,0,3,0,3,0,3,0,1,2,
%U A274912 1,2,1,2,1,2,1,2,1,2,0,3,0,3,0,3,0,3,0,3,0,3,0,1,2,1,2,1,2,1,2,1,2,1,2,1,2
%N A274912 Square array read by antidiagonals upwards in which each new term is the least nonnegative integer distinct from its neighbors.
%C A274912 In the square array we have that:
%C A274912 Antidiagonal sums give A168237.
%C A274912 Odd-indexed rows give A010673.
%C A274912 Even-indexed rows give A010684.
%C A274912 Odd-indexed columns give A000035.
%C A274912 Even-indexed columns give A010693.
%C A274912 Odd-indexed antidiagonals give the initial terms of A010674.
%C A274912 Even-indexed antidiagonals give the initial terms of A000034.
%C A274912 Main diagonal gives A010674.
%C A274912 This is also a triangle read by rows in which each new term is the least nonnegative integer distinct from its neighbors.
%C A274912 In the triangle we have that:
%C A274912 Row sums give A168237.
%C A274912 Odd-indexed columns give A000035.
%C A274912 Even-indexed columns give A010693.
%C A274912 Odd-indexed diagonals give A010673.
%C A274912 Even-indexed diagonals give A010684.
%C A274912 Odd-indexed rows give the initial terms of A010674.
%C A274912 Even-indexed rows give the initial terms of A000034.
%C A274912 Odd-indexed antidiagonals give the initial terms of A010673.
%C A274912 Even-indexed antidiagonals give the initial terms of A010684.
%F A274912 a(n) = A274913(n) - 1.
%F A274912 From _Robert Israel_, Nov 14 2016: (Start)
%F A274912 G.f.: 3*x/(1-x^2) - Sum_{k>=0} (2*x^(2*k^2+3*k+1)-x^(2*k^2+5*k+3))/(1+x).
%F A274912 G.f. as triangle: x*(1+2*y+3*x*y)/((1-x^2*y^2)*(1-x^2)). (End)
%e A274912 The corner of the square array begins:
%e A274912 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, ...
%e A274912 1, 3, 1, 3, 1, 3, 1, 3, 1, ...
%e A274912 0, 2, 0, 2, 0, 2, 0, 2, ...
%e A274912 1, 3, 1, 3, 1, 3, 1, ...
%e A274912 0, 2, 0, 2, 0, 2, ...
%e A274912 1, 3, 1, 3, 1, ...
%e A274912 0, 2, 0, 2, ...
%e A274912 1, 3, 1, ...
%e A274912 0, 2, ...
%e A274912 1, ...
%e A274912 ...
%e A274912 The sequence written as a triangle begins:
%e A274912 0;
%e A274912 1, 2;
%e A274912 0, 3, 0;
%e A274912 1, 2, 1, 2;
%e A274912 0, 3, 0, 3, 0;
%e A274912 1, 2, 1, 2, 1, 2;
%e A274912 0, 3, 0, 3, 0, 3, 0;
%e A274912 1, 2, 1, 2, 1, 2, 1, 2;
%e A274912 0, 3, 0, 3, 0, 3, 0, 3, 0;
%e A274912 1, 2, 1, 2, 1, 2, 1, 2, 1, 2;
%e A274912 ...
%p A274912 ListTools:-Flatten([seq([[0,3]$i,0,[1,2]$(i+1)],i=0..10)]); # _Robert Israel_, Nov 14 2016
%t A274912 Table[Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* _Michael De Vlieger_, Nov 14 2016 *)
%Y A274912 Cf. A000034, A000035, A001477, A010673, A010674, A010684, A010693, A168237, A274913, A274920.
%K A274912 nonn,tabl
%O A274912 0,3
%A A274912 _Omar E. Pol_, Jul 11 2016