This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274912 #22 Nov 14 2016 17:24:15 %S A274912 0,1,2,0,3,0,1,2,1,2,0,3,0,3,0,1,2,1,2,1,2,0,3,0,3,0,3,0,1,2,1,2,1,2, %T A274912 1,2,0,3,0,3,0,3,0,3,0,1,2,1,2,1,2,1,2,1,2,0,3,0,3,0,3,0,3,0,3,0,1,2, %U A274912 1,2,1,2,1,2,1,2,1,2,0,3,0,3,0,3,0,3,0,3,0,3,0,1,2,1,2,1,2,1,2,1,2,1,2,1,2 %N A274912 Square array read by antidiagonals upwards in which each new term is the least nonnegative integer distinct from its neighbors. %C A274912 In the square array we have that: %C A274912 Antidiagonal sums give A168237. %C A274912 Odd-indexed rows give A010673. %C A274912 Even-indexed rows give A010684. %C A274912 Odd-indexed columns give A000035. %C A274912 Even-indexed columns give A010693. %C A274912 Odd-indexed antidiagonals give the initial terms of A010674. %C A274912 Even-indexed antidiagonals give the initial terms of A000034. %C A274912 Main diagonal gives A010674. %C A274912 This is also a triangle read by rows in which each new term is the least nonnegative integer distinct from its neighbors. %C A274912 In the triangle we have that: %C A274912 Row sums give A168237. %C A274912 Odd-indexed columns give A000035. %C A274912 Even-indexed columns give A010693. %C A274912 Odd-indexed diagonals give A010673. %C A274912 Even-indexed diagonals give A010684. %C A274912 Odd-indexed rows give the initial terms of A010674. %C A274912 Even-indexed rows give the initial terms of A000034. %C A274912 Odd-indexed antidiagonals give the initial terms of A010673. %C A274912 Even-indexed antidiagonals give the initial terms of A010684. %F A274912 a(n) = A274913(n) - 1. %F A274912 From _Robert Israel_, Nov 14 2016: (Start) %F A274912 G.f.: 3*x/(1-x^2) - Sum_{k>=0} (2*x^(2*k^2+3*k+1)-x^(2*k^2+5*k+3))/(1+x). %F A274912 G.f. as triangle: x*(1+2*y+3*x*y)/((1-x^2*y^2)*(1-x^2)). (End) %e A274912 The corner of the square array begins: %e A274912 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, ... %e A274912 1, 3, 1, 3, 1, 3, 1, 3, 1, ... %e A274912 0, 2, 0, 2, 0, 2, 0, 2, ... %e A274912 1, 3, 1, 3, 1, 3, 1, ... %e A274912 0, 2, 0, 2, 0, 2, ... %e A274912 1, 3, 1, 3, 1, ... %e A274912 0, 2, 0, 2, ... %e A274912 1, 3, 1, ... %e A274912 0, 2, ... %e A274912 1, ... %e A274912 ... %e A274912 The sequence written as a triangle begins: %e A274912 0; %e A274912 1, 2; %e A274912 0, 3, 0; %e A274912 1, 2, 1, 2; %e A274912 0, 3, 0, 3, 0; %e A274912 1, 2, 1, 2, 1, 2; %e A274912 0, 3, 0, 3, 0, 3, 0; %e A274912 1, 2, 1, 2, 1, 2, 1, 2; %e A274912 0, 3, 0, 3, 0, 3, 0, 3, 0; %e A274912 1, 2, 1, 2, 1, 2, 1, 2, 1, 2; %e A274912 ... %p A274912 ListTools:-Flatten([seq([[0,3]$i,0,[1,2]$(i+1)],i=0..10)]); # _Robert Israel_, Nov 14 2016 %t A274912 Table[Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* _Michael De Vlieger_, Nov 14 2016 *) %Y A274912 Cf. A000034, A000035, A001477, A010673, A010674, A010684, A010693, A168237, A274913, A274920. %K A274912 nonn,tabl %O A274912 0,3 %A A274912 _Omar E. Pol_, Jul 11 2016