This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274920 #31 Nov 14 2016 13:12:55 %S A274920 0,1,2,1,2,1,2,0,2,0,1,0,2,0,1,0,2,0,1,2,1,0,1,2,0,2,1,0,1,2,0,2,1,0, %T A274920 1,2,0,1,0,2,1,2,0,1,2,1,0,2,1,2,0,1,2,1,0,2,1,2,0,1,2,0,2,1,0,2,0,1, %U A274920 2,0,1,0,2,1,0,2,0,1,2,0,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,1,0,1,2,0,1,2,0,2,1,0 %N A274920 Spiral constructed on the nodes of the triangular net in which each new term is the least nonnegative integers distinct from its neighbors. %C A274920 The structure of the spiral has the following properties: %C A274920 1) Positive terms are on the nodes of a hexagonal net. %C A274920 2) Every 0 is surrounded by three equidistant 1's and three equidistant 2's. %C A274920 3) Every 1 is surrounded by three equidistant 0's and three equidistant 2's. %C A274920 4) Every 2 is surrounded by three equidistant 0's and three equidistant 1's. %C A274920 5) Diagonals are periodic sequences with period 3 (A010872 and A080425). %C A274920 For the connection with the structure of graphene see also A275606. %F A274920 a(n) = A274921(n) - 1. %e A274920 Illustration of initial terms as a spiral: %e A274920 . %e A274920 . 2 - 0 - 1 - 2 - 0 - 1 %e A274920 . / \ %e A274920 . 0 1 - 2 - 0 - 1 - 2 0 %e A274920 . / / \ \ %e A274920 . 1 2 0 - 1 - 2 - 0 1 2 %e A274920 . / / / \ \ \ %e A274920 . 2 0 1 2 - 0 - 1 2 0 1 %e A274920 . / / / / \ \ \ \ %e A274920 . 0 1 2 0 1 - 2 0 1 2 0 %e A274920 . / / / / / \ \ \ \ \ %e A274920 . 1 2 0 1 2 0 - 1 2 0 1 2 %e A274920 . \ \ \ \ \ / / / / %e A274920 . 0 1 2 0 1 - 2 - 0 1 2 0 %e A274920 . \ \ \ \ / / / %e A274920 . 2 0 1 2 - 0 - 1 - 2 0 1 %e A274920 . \ \ \ / / %e A274920 . 1 2 0 - 1 - 2 - 0 - 1 2 %e A274920 . \ \ / %e A274920 . 0 1 - 2 - 0 - 1 - 2 - 0 %e A274920 . \ %e A274920 . 2 - 0 - 1 - 2 - 0 - 1 %e A274920 . %Y A274920 Cf. A010872, A080425, A274820, A274821, A274921, A275606, A275610. %K A274920 nonn %O A274920 0,3 %A A274920 _Omar E. Pol_, Jul 11 2016