This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A274921 #49 Sep 16 2017 03:45:51 %S A274921 1,2,3,2,3,2,3,1,3,1,2,1,3,1,2,1,3,1,2,3,2,1,2,3,1,3,2,1,2,3,1,3,2,1, %T A274921 2,3,1,2,1,3,2,3,1,2,3,2,1,3,2,3,1,2,3,2,1,3,2,3,1,2,3,1,3,2,1,3,1,2, %U A274921 3,1,2,1,3,2,1,3,1,2,3,1,2,1,3,2,1,3,1,2,3,1,2,3,2,1,3,2,1,2,3,1,2,3,1,3,2,1 %N A274921 Spiral constructed on the nodes of the triangular net in which each new term is the least positive integer distinct from its neighbors. %C A274921 The structure of the spiral has the following properties: %C A274921 1) Every 1 is surrounded by three equidistant 2's and three equidistant 3's. %C A274921 2) Every 2 is surrounded by three equidistant 1's and three equidistant 3's. %C A274921 3) Every 3 is surrounded by three equidistant 1's and three equidistant 2's. %C A274921 4) Diagonals are periodic sequences with period 3 (A010882 and A130784). %C A274921 From _Juan Pablo Herrera P._, Nov 16 2016: (Start) %C A274921 5) Every hexagon with a 1 in its center is the same hexagon as the one in the middle of the spiral. %C A274921 6) Every triangle whose number of numbers is divisible by 3 has the same number of 1's, 2's, and 3's. For example, a triangle with 6 numbers, has two 1's, two 2's, and two 3's. (End) %C A274921 a(n) = a(n-2) if n > 2 is in A014591, otherwise a(n) = 6 - a(n-1)-a(n-2). - _Robert Israel_, Sep 15 2017 %H A274921 Robert Israel, <a href="/A274921/b274921.txt">Table of n, a(n) for n = 0..10000</a> %F A274921 a(n) = A274920(n) + 1. %e A274921 Illustration of initial terms as a spiral: %e A274921 . %e A274921 . 3 - 1 - 2 - 3 - 1 - 2 %e A274921 . / \ %e A274921 . 1 2 - 3 - 1 - 2 - 3 1 %e A274921 . / / \ \ %e A274921 . 2 3 1 - 2 - 3 - 1 2 3 %e A274921 . / / / \ \ \ %e A274921 . 3 1 2 3 - 1 - 2 3 1 2 %e A274921 . / / / / \ \ \ \ %e A274921 . 1 2 3 1 2 - 3 1 2 3 1 %e A274921 . / / / / / \ \ \ \ \ %e A274921 . 2 3 1 2 3 1 - 2 3 1 2 3 %e A274921 . \ \ \ \ \ / / / / %e A274921 . 1 2 3 1 2 - 3 - 1 2 3 1 %e A274921 . \ \ \ \ / / / %e A274921 . 3 1 2 3 - 1 - 2 - 3 1 2 %e A274921 . \ \ \ / / %e A274921 . 2 3 1 - 2 - 3 - 1 - 2 3 %e A274921 . \ \ / %e A274921 . 1 2 - 3 - 1 - 2 - 3 - 1 %e A274921 . \ %e A274921 . 3 - 1 - 2 - 3 - 1 - 2 %e A274921 . %p A274921 A[0]:= 1: A[1]:= 2: A[2]:= 3: %p A274921 b:= 3: c:= 2: d:= 2: e:= 1: f:= 1: %p A274921 for n from 3 to 200 do %p A274921 if n = b then %p A274921 r:= b; b:= c + d - f + 1; f:= e; e:= d; d:= c; c:= r; %p A274921 A[n]:= A[n-2]; %p A274921 else %p A274921 A[n]:= 6 - A[n-1] - A[n-2]; %p A274921 fi %p A274921 od: %p A274921 seq(A[i],i=0..200); # _Robert Israel_, Sep 15 2017 %Y A274921 Cf. A001399, A010882, A130784, A253186, A274820, A274821, A274920, A275606, A275610. %K A274921 nonn %O A274921 0,2 %A A274921 _Omar E. Pol_, Jul 11 2016