cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274933 Maximal number of non-attacking queens on a quarter chessboard containing n^2 squares.

This page as a plain text file.
%I A274933 #68 Aug 08 2025 14:21:11
%S A274933 1,1,2,3,4,5,6,7,8,9,10,11,12,13,13,14,15,16,17,18,19,20,21,22,23,24,
%T A274933 25,26,27,28,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,42,43,44,45,
%U A274933 46,47,48,49,50,51,52,53,54,55,56,57,57,58,59,60,61,62
%N A274933 Maximal number of non-attacking queens on a quarter chessboard containing n^2 squares.
%C A274933 Take the quarter-board formed from a 2n-1 X 2n-1 chessboard by joining the center square to the top two corners. There are n^2 squares. If n = 11, 2n-1 = 21 and the board looks like this, with 11^2 = 121 squares (the top row is the top of the chessboard, the single cell at the bottom is at the center of the board):
%C A274933 OOOOOOOOOOOOOOOOOOOOO
%C A274933 -OOOOOOOOOOOOOOOOOOO-
%C A274933 --OOOOOOOOOOOOOOOOO--
%C A274933 ---OOOOOOOOOOOOOOO---
%C A274933 ----OOOOOOOOOOOOO----
%C A274933 -----OOOOOOOOOOO-----
%C A274933 ------OOOOOOOOO------
%C A274933 -------OOOOOOO-------
%C A274933 --------OOOOO--------
%C A274933 ---------OOO---------
%C A274933 ----------O----------
%C A274933 The main question is, how does a(n) behave when n is large? (See A287866.)
%C A274933 This is a bisection of A287864. - _Rob Pratt_, Jun 04 2017
%H A274933 Andy Huchala, <a href="/A274933/b274933.txt">Table of n, a(n) for n = 1..106</a>
%H A274933 Andy Huchala, <a href="/A274933/a274933_2.py.txt">Python program</a>.
%F A274933 Since there can be at most one queen per row, a(n) <= n. In fact, since there cannot be a queen on both rows 1 and 2, a(n) <= n-1 for n>1. - _N. J. A. Sloane_, Jun 04 2017
%e A274933 For n=6 the maximal number is 5:
%e A274933 OOXOOOOOOOO
%e A274933 -OOOOOOXOO-
%e A274933 --OXOOOOO--
%e A274933 ---OOOXO---
%e A274933 ----OOO----
%e A274933 -----X-----
%e A274933 Examples from _Rob Pratt_, Jul 13 2016:
%e A274933 (i) For n=15 the maximal number is 13:
%e A274933 OOOOOOXOOOOOOOOOOOOOOOOOOOOOO
%e A274933 -OOOOOOOOOOOOOOOOOOXOOOOOOOO-
%e A274933 --OOOOOXOOOOOOOOOOOOOOOOOOO--
%e A274933 ---OOOOOOOOOOOOOOOXOOOOOOO---
%e A274933 ----OOOOOOOOOOOXOOOOOOOOO----
%e A274933 -----OOOOOOOXOOOOOOOOOOO-----
%e A274933 ------OOOXOOOOOOOOOOOOO------
%e A274933 -------OOOOOOOOOXOOOOO-------
%e A274933 --------OOXOOOOOOOOOO--------
%e A274933 ---------OOOOOOOOXOO---------
%e A274933 ----------OOOOXOOOO----------
%e A274933 -----------XOOOOOO-----------
%e A274933 ------------OXOOO------------
%e A274933 -------------OOO-------------
%e A274933 --------------O--------------
%e A274933 (ii) For n=31 the maximal number is 28:
%e A274933 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOO
%e A274933 -OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOO-
%e A274933 --OOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO--
%e A274933 ---OOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO---
%e A274933 ----OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOO----
%e A274933 -----OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOO-----
%e A274933 ------OOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO------
%e A274933 -------OOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO-------
%e A274933 --------OOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOOO--------
%e A274933 ---------OOOOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOO---------
%e A274933 ----------OOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOOO----------
%e A274933 -----------OOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOOOOO-----------
%e A274933 ------------OOOOOOOOOOOOOOOOOOOOOOOOOOOXOOOOOOOOO------------
%e A274933 -------------OOOOOOOOOOOOOOOOOOXOOOOOOOOOOOOOOOO-------------
%e A274933 --------------OOOOOOOOOOXOOOOOOOOOOOOOOOOOOOOOO--------------
%e A274933 ---------------OOOOOXOOOOOOOOOOOOOOOOOOOOOOOOO---------------
%e A274933 ----------------OOOOOOOXOOOOOOOOOOOOOOOOOOOOO----------------
%e A274933 -----------------OOOOOOOOOOOOOOOOOOOXOOOOOOO-----------------
%e A274933 ------------------OOOOXOOOOOOOOOOOOOOOOOOOO------------------
%e A274933 -------------------OOOOOOOOOOOOOOOOXOOOOOO-------------------
%e A274933 --------------------OXOOOOOOOOOOOOOOOOOOO--------------------
%e A274933 ---------------------OOOOOOOOOOOOOXOOOOO---------------------
%e A274933 ----------------------OOOOOOOOXOOOOOOOO----------------------
%e A274933 -----------------------OOOXOOOOOOOOOOO-----------------------
%e A274933 ------------------------OOOOOOOOOXOOO------------------------
%e A274933 -------------------------XOOOOOOOOOO-------------------------
%e A274933 --------------------------OOOOOOXOO--------------------------
%e A274933 ---------------------------OOXOOOO---------------------------
%e A274933 ----------------------------OOOOO----------------------------
%e A274933 -----------------------------OOO-----------------------------
%e A274933 ------------------------------O------------------------------
%Y A274933 Cf. A274616, A287864, A287866.
%K A274933 nonn
%O A274933 1,3
%A A274933 _N. J. A. Sloane_, Jul 13 2016
%E A274933 Terms a(n) with n >= 15 corrected and extended by _Rob Pratt_, Jul 13 2016
%E A274933 a(46)-a(67) from _Andy Huchala_, Mar 27 2024