A274967 Odd composite numbers n which are not m-gonal number for 3 <= m < n.
77, 119, 143, 161, 187, 203, 209, 221, 299, 319, 323, 329, 371, 377, 391, 407, 413, 437, 473, 493, 497, 517, 527, 533, 539, 551, 581, 583, 589, 611, 623, 629, 649, 667, 689, 707, 713, 731, 737, 749, 767, 779, 791, 799, 803, 817, 851, 869, 893, 899, 901, 913
Offset: 1
Examples
77 is in this sequence because 77 is trivially a 77-gonal number of order k = 2, but not an m-gonal number for 3 <= k <= (1/2)*{-1 + sqrt[1 + 8*77]}.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- OEIS Wiki, Polygonal numbers
Programs
-
Mathematica
Select[Range[500]2+1, ! PrimeQ[#] && FindInstance[n*(4 + n*(s-2)-s)/2 == # && s >= 3 && n >= 3, {s, n}, Integers] == {} &] (* Giovanni Resta, Jul 13 2016 *)
-
Python
from sympy import isprime A274967_list = [] for n in range(3,10**6,2): if not isprime(n): k = 3 while k*(k+1) <= 2*n: if not (2*(k*(k-2)+n)) % (k*(k - 1)): break k += 1 else: A274967_list.append(n) # Chai Wah Wu, Jul 28 2016
-
Sage
def is_a(n): if is_even(n): return False if is_prime(n): return False for m in (3..(n+3)//3): if pari('ispolygonal')(n, m): return False return True print([n for n in (3..913) if is_a(n)]) # Peter Luschny, Jul 28 2016
Extensions
a(10)-a(52) from Giovanni Resta, Jul 13 2016
Comments