A274976 Numbers k such that (26*10^k + 31)/3 is prime.
0, 1, 2, 3, 4, 7, 9, 57, 98, 122, 123, 249, 304, 318, 339, 374, 390, 476, 619, 1358, 1724, 3351, 5046, 5572, 6685, 9421, 14362, 97353
Offset: 1
Examples
3 is in this sequence because (26*10^3 + 31)/3 = 877 is prime. Initial terms and associated primes: a(1) = 0, 19; a(2) = 1, 97; a(3) = 2, 877; a(4) = 3, 8677; a(5) = 4, 86677, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 86w77.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(26*10^# + 31)/3] &]
-
PARI
is(n)=ispseudoprime((26*10^n+31)/3) \\ Charles R Greathouse IV, Jun 13 2017
Comments