cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274977 a(n) = a(n-1) + 3*a(n-2) with n>1, a(0)=1, a(1)=6.

This page as a plain text file.
%I A274977 #53 Jul 26 2023 17:44:12
%S A274977 1,6,9,27,54,135,297,702,1593,3699,8478,19575,45009,103734,238761,
%T A274977 549963,1266246,2916135,6714873,15463278,35607897,81997731,188821422,
%U A274977 434814615,1001278881,2305722726,5309559369,12226727547,28155405654,64835588295,149301805257,343808570142
%N A274977 a(n) = a(n-1) + 3*a(n-2) with n>1, a(0)=1, a(1)=6.
%C A274977 a(n)/a(n+1) converges to 1/A209927 as n approaches infinity.
%H A274977 Bruno Berselli, <a href="/A274977/b274977.txt">Table of n, a(n) for n = 0..1000</a>
%H A274977 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,3).
%F A274977 G.f.: (1 + 5*x)/(1 - x - 3*x^2).
%F A274977 a(n) = ((13 + 11*sqrt(13))*(1 + sqrt(13))^n + (13 - 11*sqrt(13))*(1 - sqrt(13))^n)/(26*2^n).
%F A274977 3*a(n) + a(n+1) =  9*A105476(n+1).
%F A274977 3*a(n) - a(n+1) = 27*A006130(n-3) with n>1, A006130(-1) = 0.
%F A274977 a(n+1) - a(n)   = 27*A105476(n-3) with n>2.
%F A274977 a(n) = 3^((n-1)/2)*( sqrt(3)*Fibonacci(n+1, 1/sqrt(3)) + 5*Fibonacci(n, 1/sqrt(3)) ). - _G. C. Greubel_, Jan 15 2020
%F A274977 E.g.f.: (1/13)*exp(x/2)*(13*cosh((sqrt(13)*x)/2) + 11*sqrt(13)*sinh((sqrt(13)*x)/2)). - _Stefano Spezia_, Jan 15 2020
%e A274977 Table of similar sequences (not extendable on the left side) where this recurrence can be applied to the first two terms:
%e A274977 ----------------------------------------------------------------------
%e A274977 (*)      -  -  1, -1,  2, -1,  5,   2,  17,  23,   74,  143,  365, ...
%e A274977 A052533: -  -  1,  0,  3,  3, 12,  21,  57, 120,  291,  651, 1524, ...
%e A274977 (^)      -  0, 1,  1,  4,  7, 19,  40,  97, 217,  508, 1159, 2683, ...
%e A274977 A006138: -  -  1,  2,  5, 11, 26,  59, 137, 314,  725, 1667, 3842, ...
%e A274977 A105476: -  -  1,  3,  6, 15, 33,  78, 177, 411,  942, 2175, 5001, ...
%e A274977 (^)      0, 1, 1,  4,  7, 19, 40,  97, 217, 508, 1159, 2683, 6160, ...
%e A274977 A105963: -  -  1,  5,  8, 23, 47, 116, 257, 605, 1376, 3191, 7319, ...
%e A274977 A274977: -  -  1,  6,  9, 27, 54, 135, 297, 702, 1593, 3699, 8478, ...
%e A274977 A075118: -  2, 1,  7, 10, 31, 61, 154, 337, 799, 1810, 4207, 9637, ...
%e A274977 ----------------------------------------------------------------------
%e A274977 (*) see version A140165.
%e A274977 (^) see A006130 and the signed versions A140167, A182228.
%p A274977 seq(coeff(series((1+5*x)/(1-x-3*x^2), x, n+1), x, n), n = 0..40); # _G. C. Greubel_, Jan 15 2020
%t A274977 RecurrenceTable[{a[n]==a[n-1] +3a[n-2], a[0]==1, a[1]==6}, a, {n,0,40}]
%t A274977 Table[Round[Sqrt[3]^(n-1)*(Sqrt[3]*Fibonacci[n+1, 1/Sqrt[3]] + 5*Fibonacci[n, 1/Sqrt[3]])], {n,0,40}] (* _G. C. Greubel_, Jan 15 2020 *)
%t A274977 LinearRecurrence[{1,3},{1,6},40] (* _Harvey P. Dale_, Jul 11 2023 *)
%o A274977 (PARI) v=vector(40); v[1]=1; v[2]=6; for(n=3, #v, v[n]=v[n-1]+3*v[n-2]); v
%o A274977 (Sage)
%o A274977 from sage.combinat.sloane_functions import recur_gen2
%o A274977 a = recur_gen2(1, 6, 1, 3)
%o A274977 [next(a) for n in range(40)]
%o A274977 (Magma) [n le 2 select 5*n-4 else Self(n-1)+3*Self(n-2): n in [1..40]];
%o A274977 (Magma) R<x>:=PowerSeriesRing(Integers(), 32); Coefficients(R!((1 + 5*x)/(1- x-3*x^2))); // _Marius A. Burtea_, Jan 15 2020
%o A274977 (GAP) a:=[1,6];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; a; # _G. C. Greubel_, Jan 15 2020
%Y A274977 Cf. A006130, A006138, A052533, A075118, A105476, A105963.
%K A274977 nonn,easy
%O A274977 0,2
%A A274977 _Bruno Berselli_, Sep 13 2016