cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A274982 a(n) is the number of terms required in the Basel Problem, i.e., Sum_{m >= 1} 1/m^2, for the first appearance of n correct digits in the decimal expansion of Pi^2/6 to occur.

This page as a plain text file.
%I A274982 #67 May 11 2019 18:34:47
%S A274982 1,22,203,1071,29354,245891,14959260,14959260,146023209,1178930480,
%T A274982 20735515065,121559317130,4416249685106,37826529360487,
%U A274982 155364605873808,2291095531474075,27417981382118579,154501831890087986,2116782166626093033,13809261875873749757
%N A274982 a(n) is the number of terms required in the Basel Problem, i.e., Sum_{m >= 1} 1/m^2, for the first appearance of n correct digits in the decimal expansion of Pi^2/6 to occur.
%C A274982 a(n) = round(1/(floor((1/6)Pi^2 * 10^(n-1))/10^(n-1))) for all n up to at least n=1000 (and it can be shown that this formula almost certainly holds for all n beyond that; see A126809 for a similar problem). - _Jon E. Schoenfield_, Nov 06 2016, Nov 12 2016
%H A274982 Jon E. Schoenfield, <a href="/A274982/b274982.txt">Table of n, a(n) for n = 1..1000</a>
%H A274982 Ed Sandifer, <a href="http://eulerarchive.maa.org/hedi/HEDI-2003-12.pdf">How Euler Did It: Estimating the Basel Problem</a>, MAA Online (2003).
%e A274982 a(2) = 22 because 22 terms (Sum_{m = 1..22} 1/m^2) are required for the first two decimal digits of Pi^2/6 to occur for the first time.
%o A274982 (Perl) use ntheory ":all"; use bignum try=>"GMP"; my ($dig,$sum,$exp) = (0, 0, (Pi(40)**2)/6); $exp =~ s/\.//; for my $m (1 .. 1e9) { $sum += 1/($m*$m); (my $str = $sum) =~ s/\.//; print ++$dig, " $m\n" while length($str) > $dig && index($exp, substr($str,0,$dig+1)) == 0; } # _Dana Jacobsen_, Sep 29 2016
%Y A274982 Cf. A013661, A126809.
%K A274982 nonn,base
%O A274982 1,2
%A A274982 _G. L. Honaker, Jr._, Sep 23 2016
%E A274982 a(7)-a(11) from _Dana Jacobsen_, Oct 03 2016