cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275015 Number of neighbors of each new term in an isosceles triangle read by rows.

This page as a plain text file.
%I A275015 #49 Apr 24 2018 05:52:24
%S A275015 0,1,2,1,3,2,1,3,3,2,1,3,3,3,2,1,3,3,3,3,2,1,3,3,3,3,3,2,1,3,3,3,3,3,
%T A275015 3,2,1,3,3,3,3,3,3,3,2,1,3,3,3,3,3,3,3,3,2,1,3,3,3,3,3,3,3,3,3,2,1,3,
%U A275015 3,3,3,3,3,3,3,3,3,2,1,3,3,3,3,3,3,3,3,3,3,3,2,1,3,3,3,3,3,3,3,3,3,3,3,3,2
%N A275015 Number of neighbors of each new term in an isosceles triangle read by rows.
%C A275015 To evaluate a(n) consider only the neighbors of a(n) that are present in the isosceles triangle when a(n) should be a new term in the triangle.
%C A275015 Apart from the left border and the right border, the rest of the elements are 3's.
%C A275015 If every "3" is replaced with a "4", we have the sequence A278290.
%C A275015 a(n) is also the number of new penny-penny contacts when putting pennies in a triangular arrangement.
%C A275015 For the same idea but for a right triangle see A278317; for a square array see A278290, for a square spiral see A278354; and for a hexagonal spiral see A047931.
%e A275015 The sequence written as an isosceles triangle begins:
%e A275015 .
%e A275015 .                     0;
%e A275015 .                   1,  2;
%e A275015 .                 1,  3,  2;
%e A275015 .               1,  3,  3,  2;
%e A275015 .             1,  3,  3,  3,  2;
%e A275015 .           1,  3,  3,  3,  3,  2;
%e A275015 .         1,  3,  3,  3,  3,  3,  2;
%e A275015 .       1,  3,  3,  3,  3,  3,  3,  2;
%e A275015 .     1,  3,  3,  3,  3,  3,  3,  3,  2;
%e A275015 .   1,  3,  3,  3,  3,  3,  3,  3,  3,  2;
%e A275015 ...
%t A275015 Table[Boole[n > 1] (Prepend[Reverse@ Rest@ #, First@ #] &@ Range@ n /. k_ /; k > 3 -> 3), {n, 13}] // Flatten (* or *)
%t A275015 Table[Boole[n > 1] (Map[Mod[#, n] &, Range@ n] /. {k_ /; k > 1 -> 3, 0 -> 2}), {n, 13}] // Flatten (* _Michael De Vlieger_, Nov 23 2016 *)
%Y A275015 Row sums give A008585.
%Y A275015 Left border gives A057427.
%Y A275015 Every diagonal that is parallel to the left border gives the elements greater than 1 of A158799.
%Y A275015 Right border gives 0 together with A007395, also twice A057427.
%Y A275015 Every diagonal that is parallel to the right border gives A122553.
%Y A275015 Cf. A047931, A278290, A278317, A278354.
%K A275015 nonn,tabl
%O A275015 1,3
%A A275015 _Omar E. Pol_, Nov 20 2016