This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275020 #22 May 25 2024 17:37:41 %S A275020 1,2,3,10,19,35,43,80,107,143,199,218,255,304,353,560,904,996,1051, %T A275020 6141,8075,9913,11151,28469,75244,108960,122592,178206,187471,257431 %N A275020 Numbers k such that (5*10^k + 91) / 3 is prime. %C A275020 For k > 1, numbers k such that the digit 1 followed by k-2 occurrences of the digit 6 followed by the digits 97 is prime (see Example section). %C A275020 a(31) > 3*10^5. %H A275020 Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>. %H A275020 Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 16w97</a>. %e A275020 3 is in this sequence because (5*10^3 + 91) / 3 = 1697 is prime. %e A275020 Initial terms and associated primes: %e A275020 a(1) = 1, 47; %e A275020 a(2) = 2, 197; %e A275020 a(3) = 3, 1697; %e A275020 a(4) = 10, 16666666697; %e A275020 a(5) = 19, 16666666666666666697, etc. %t A275020 Select[Range[0, 100000], PrimeQ[(5*10^# + 91) / 3] &] %o A275020 (PARI) is(n)=ispseudoprime((5*10^n + 91)/3) \\ _Charles R Greathouse IV_, Jun 13 2017 %Y A275020 Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269. %K A275020 nonn,more %O A275020 1,2 %A A275020 _Robert Price_, Nov 12 2016 %E A275020 a(26)-a(29) from _Robert Price_, Apr 28 2018 %E A275020 a(30) from _Robert Price_, Oct 25 2023