cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275024 Total weight of the n-th twice-prime-factored multiset partition.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 1, 3, 2, 3, 2, 3, 1, 2, 3, 4, 3, 3, 2, 4, 2, 3, 2, 4, 4, 2, 3, 3, 1, 4, 3, 5, 3, 4, 3, 4, 1, 3, 2, 5, 2, 3, 2, 4, 4, 3, 4, 5, 2, 5, 4, 3, 1, 4, 4, 4, 3, 2, 3, 5, 1, 4, 3, 6, 3, 4, 3, 5, 3, 4, 2, 5, 2, 2, 5, 4, 3, 3, 1, 6, 4, 3, 4, 4, 5, 3, 2, 5, 2, 5, 2, 4, 4, 5, 4, 6, 2, 3, 4, 6, 3, 5, 3, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 12 2016

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets of positive integers. The n-th twice-prime-factored multiset partition is constructed by factoring n into prime numbers and then factoring each prime index plus 1 into prime numbers. This produces a unique multiset of multisets of prime numbers which can then be normalized (see example) to produce each possible multiset partition as n ranges over all positive integers.

Examples

			The sequence of multiset partitions begins:
(), ((1)), ((2)), ((1)(1)), ((11)), ((1)(2)), ((3)),
((1)(1)(1)), ((2)(2)), ((1)(11)), ((12)), ((1)(1)(2)),
((4)), ((1)(3)), ((2)(11)), ((1)(1)(1)(1)), ((111)),
((1)(2)(2)), ((22)), ((1)(1)(11)), ((2)(3)), ((1)(12)),
((13)), ((1)(1)(1)(2)), ((11)(11)), ((1)(4)), ((2)(2)(2)),
((1)(1)(3)), ((5)), ((1)(2)(11)), ((112)), ((1)(1)(1)(1)(1)),
((2)(12)), ((1)(111)), ((3)(11)), ((1)(1)(2)(2)), ((6)), ...
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimeOmega[PrimePi[p]+1]]],{n,1,100}]

Formula

If prime(k) has weight equal to the number of prime factors (counting multiplicity) of k+1, then a(n) is the sum of weights over all prime factors (counting multiplicity) of n.