A275024 Total weight of the n-th twice-prime-factored multiset partition.
0, 1, 1, 2, 2, 2, 1, 3, 2, 3, 2, 3, 1, 2, 3, 4, 3, 3, 2, 4, 2, 3, 2, 4, 4, 2, 3, 3, 1, 4, 3, 5, 3, 4, 3, 4, 1, 3, 2, 5, 2, 3, 2, 4, 4, 3, 4, 5, 2, 5, 4, 3, 1, 4, 4, 4, 3, 2, 3, 5, 1, 4, 3, 6, 3, 4, 3, 5, 3, 4, 2, 5, 2, 2, 5, 4, 3, 3, 1, 6, 4, 3, 4, 4, 5, 3, 2, 5, 2, 5, 2, 4, 4, 5, 4, 6, 2, 3, 4, 6, 3, 5, 3, 4
Offset: 1
Keywords
Examples
The sequence of multiset partitions begins: (), ((1)), ((2)), ((1)(1)), ((11)), ((1)(2)), ((3)), ((1)(1)(1)), ((2)(2)), ((1)(11)), ((12)), ((1)(1)(2)), ((4)), ((1)(3)), ((2)(11)), ((1)(1)(1)(1)), ((111)), ((1)(2)(2)), ((22)), ((1)(1)(11)), ((2)(3)), ((1)(12)), ((13)), ((1)(1)(1)(2)), ((11)(11)), ((1)(4)), ((2)(2)(2)), ((1)(1)(3)), ((5)), ((1)(2)(11)), ((112)), ((1)(1)(1)(1)(1)), ((2)(12)), ((1)(111)), ((3)(11)), ((1)(1)(2)(2)), ((6)), ...
Links
- Mathematics Stack Exchange, Why does mathematical convention deal so ineptly with multisets?
- Wikiversity, Partitions of multisets
Programs
-
Mathematica
Table[Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimeOmega[PrimePi[p]+1]]],{n,1,100}]
Formula
If prime(k) has weight equal to the number of prime factors (counting multiplicity) of k+1, then a(n) is the sum of weights over all prime factors (counting multiplicity) of n.
Comments