cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275025 Number of pairs of functions (f,g) on [n] such that fg is an idempotent.

This page as a plain text file.
%I A275025 #22 Jan 05 2017 19:48:16
%S A275025 1,1,14,411,21208,1703145,195285456,30113813863,5985071842688,
%T A275025 1485696848042385,449588756524844800,162668114715527356551,
%U A275025 69259775641873646754816,34243366782512243213286169,19439795735713938153732810752,12549399357405863545478828022375
%N A275025 Number of pairs of functions (f,g) on [n] such that fg is an idempotent.
%H A275025 Alois P. Heinz, <a href="/A275025/b275025.txt">Table of n, a(n) for n = 0..100</a>
%H A275025 David Einstein, <a href="https://github.com/deinst/oeis-function-identities/blob/master/Pseudoinverses.ipynb">Pseudoinverses on finite sets</a>
%F A275025 a(n) = Sum_{k = 0..n} ((n!)^2/k!) Sum_{j = 0..n-k} 1/(j!(n-k-j)!) Sum_{l = 0..j} k^(n-k-j+l) n^(n-k-l) stirling2(j,l)/(n-k-l)!.
%e A275025 The fourteen pairs of functions on [2] are: ([1,1], [1,1]), ([1,1], [1,2]), ([1,1], [2,1]), ([1,1], [2,2]), ([1,2], [1,1]), ([1,2], [1,2]), ([1,2], [2,2]), ([2,1], [1,1]), ([2,1], [2,1]), ([2,1], [2,2]), ([2,2], [1,1]), ([2,2], [1,2]), ([2,2], [2,1]), ([2,2], [2,2]).
%Y A275025 Cf. A239768, A000248.
%K A275025 nonn
%O A275025 0,3
%A A275025 _David Einstein_, Nov 12 2016