This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275026 #38 Mar 22 2023 21:58:30 %S A275026 1,24,122522400,41936006482988380963200, %T A275026 2818633727625754852693848168481445291030176361088000 %N A275026 a(n) is the largest number k such that the sum of divisors of k does not exceed the n-th power of the number of divisors of k. %C A275026 Largest number k such that sigma(k) <= tau(k)^n. %C A275026 a(4) >= 41936006482988380963200. %C A275026 From _Jon E. Schoenfield_, Nov 01 2017: (Start) %C A275026 a(5) >= 2812833572480164685801568964499317649172616193664000; %C A275026 a(6) >= A002110(49)*2321816378289408000 = 1.934333...*10^107. %C A275026 (End) %C A275026 a(6) >= A002110(47) * 117664981274811979008000 = 1.9365109... * 10^107. - _Max Alekseyev_, Mar 21 2023 %e A275026 24 has 8 divisors (1, 2, 3, 4, 6, 8, 12, and 24), and their sum is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = 60, which does not exceed 8^2 = 64. Every number k > 24 has sigma(k) > tau(k)^2, so a(2) = 24. %Y A275026 Cf. A000005, A000203, A236021. %K A275026 nonn,more %O A275026 1,2 %A A275026 _Jon E. Schoenfield_, Nov 12 2016 %E A275026 a(4)-a(5) from _Max Alekseyev_, Mar 21 2023