This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275029 #23 Nov 18 2016 12:55:52 %S A275029 2,22,30,42,490,1002,1958,3010,3718,6842,12310,37338,53174,89134, %T A275029 105558,124754,204226,614154,1741630,2012558,13848650,34262962, %U A275029 133230930,214481126,271248950,607163746,4835271870,30388671978,45060624582,88751778802,107438159466 %N A275029 Partition numbers (A000041) congruent to 2 (mod 4). %C A275029 Partition numbers having the same number of even divisors as odd divisors. %C A275029 The corresponding indices are in A237280. %C A275029 The intersection of A000041 and A016825. %H A275029 Robert Israel, <a href="/A275029/b275029.txt">Table of n, a(n) for n = 1..500</a> %e A275029 30 is in the sequence because it is a partition number, and its divisors are [1,2,3,5,6,10,15,30]. %p A275029 select(t -> t mod 4 = 2, map(combinat:-numbpart, [$1..500])); # _Robert Israel_, Nov 14 2016 %t A275029 Select[PartitionsP@ Range@ 160, Mod[#, 4] == 2 &] (* _Michael De Vlieger_, Nov 15 2016 *) %o A275029 (PARI) a000041(n) = numbpart(n) %o A275029 terms(n) = my(i=0, k=2); while(1, if(Mod(a000041(k), 4)==2, print1(a000041(k), ", "); i++); if(i==n, break); k++) %o A275029 /* Print initial 50 terms as follows */ %o A275029 terms(50) \\ _Felix Fröhlich_, Nov 15 2016 %Y A275029 Cf. A000041, A016825, A213179, A237280. %K A275029 nonn %O A275029 1,1 %A A275029 _Colin Barker_, Nov 13 2016