A278196
Partition numbers (A000041) of the form 2^2 * k for odd k.
Original entry on oeis.org
2436, 5604, 451276, 715220, 831820, 1300156, 7089500, 12132164, 15796476, 26543660, 190569292, 483502844, 761002156, 851376628, 1327710076, 2841940500, 3519222692, 9035836076, 54770336324, 1280011042268, 1820701100652, 3972999029388, 6085253859260
Offset: 1
-
Select[PartitionsP@ Range@ 210, Count[#, k_ /; EvenQ@ k] == 2 Count[#, k_ /; OddQ@ k] &@ Divisors@ # &] (* Michael De Vlieger, Nov 15 2016 *)
-
maxk=300; L=List(); for(k=1, maxk, p=numbpart(k); if(p%2^2==0 & p\2^2%2==1, listput(L, p))); Vec(L)
A278197
Partition numbers (A000041) of the form 2^3 * k for odd k.
Original entry on oeis.org
56, 792, 8118264, 92669720, 150198136, 1188908248, 1844349560, 3163127352, 4351078600, 5371315400, 7346629512, 11097645016, 16670689208, 18440293320, 684957390936, 6622987708040, 51820051838712, 77195892663512, 133978259344888, 197726516681672
Offset: 1
-
Select[PartitionsP@ Range@ 250, Count[#, k_ /; EvenQ@ k] == 3 Count[#, k_ /; OddQ@ k] &@ Divisors@ # &] (* Michael De Vlieger, Nov 15 2016 *)
-
maxk=300; L=List(); for(k=1, maxk, p=numbpart(k); if(p%2^3==0 & p\2^3%2==1, listput(L, p))); Vec(L)
A278198
Partition numbers (A000041) of the form 2^4 * k for odd k.
Original entry on oeis.org
176, 384276336, 2291320912, 5964539504, 10015581680, 290726957916112, 6486674127079088, 60105349839666544, 134819180623301520, 2332821198543892336, 14023788883518847344, 126891542690981418000, 320103136152993290544, 5852110108921301661040
Offset: 1
-
Select[PartitionsP@ Range@ 518, Count[#, k_ /; EvenQ@ k] == 4 Count[#, k_ /; OddQ@ k] &@ Divisors@ # &] (* Michael De Vlieger, Nov 15 2016 *)
-
maxk=600; L=List(); for(k=1, maxk, p=numbpart(k); if(p%2^4==0 & p\2^4%2==1, listput(L, p))); Vec(L)
A278199
Partition numbers (A000041) of the form 2^5 * k for odd k.
Original entry on oeis.org
4087968, 625846753120, 576672674947168, 1896564103591584, 21424521360255636320, 61382395164161775318496, 25744258930034131533263392, 54951205445179608281719072, 1317709210896221493178043552, 172557592110602218633091543840, 6647848746214407376439536432805536
Offset: 1
-
Select[PartitionsP@ Range@ 1200, Count[#, k_ /; EvenQ@ k] == 5 Count[#, k_ /; OddQ@ k] &@ Divisors@ # &] (* Michael De Vlieger, Nov 15 2016 *)
-
maxk=1400; L=List(); for(k=1, maxk, p=numbpart(k); if(p%2^5==0 & p\2^5%2==1, listput(L, p))); Vec(L)
A278200
Partition numbers (A000041) of the form 2^6 * k for odd k.
Original entry on oeis.org
2323520, 37027355200, 8030248384943040, 55733465144636286656, 134508188001572923840, 6179690078238084808000, 975509982873756796925504, 69523232218023552371152320, 638864582333908382360557376, 1151097146124113726578727360, 1204186073016375022219516992
Offset: 1
-
Select[PartitionsP@ Range@ 1500, Count[#, k_ /; EvenQ@ k] == 6 Count[#, k_ /; OddQ@ k] &@ Divisors@ # &] (* Michael De Vlieger, Nov 15 2016 *)
-
maxk=1000; L=List(); for(k=1, maxk, p=numbpart(k); if(p%2^6==0 & p\2^6%2==1, listput(L, p))); Vec(L)
A278201
Partition numbers (A000041) of the form 2^7 * k for odd k.
Original entry on oeis.org
541946240, 47826239745920, 49760750604354432757376, 18426207875324210441995136, 914345304752746677204951178080640, 377394877138559089794329589034333523822720, 33381228189530831120385246576357623531476650368, 23951815370456759593096244705083096637451017834880
Offset: 1
-
Select[PartitionsP@ Range@ 2000, Count[#, k_ /; EvenQ@ k] == 7 Count[#, k_ /; OddQ@ k] &@ Divisors@ # &] (* Michael De Vlieger, Nov 15 2016 *)
-
maxk=3000; L=List(); for(k=1, maxk, p=numbpart(k); if(p%2^7==0 & p\2^7%2==1, listput(L, p))); Vec(L)
Showing 1-6 of 6 results.
Comments