A275057 Numbers of closed lambda terms of natural size n.
0, 0, 1, 1, 3, 6, 17, 41, 116, 313, 895, 2550, 7450, 21881, 65168, 195370, 591007, 1798718, 5510023, 16966529, 52506837, 163200904, 509323732, 1595311747, 5013746254, 15805787496, 49969942138, 158396065350, 503317495573, 1602973785463, 5116010587910, 16360492172347
Offset: 0
Keywords
Links
- Pierre Lescanne, Table of n, a(n) for n = 0..299
- Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, Marek Zaionc, A Natural Counting of Lambda Terms, SOFSEM 2016: 183-194.
- Maciej Bendkowski, K Grygiel, P Tarau, Random generation of closed simply-typed lambda-terms: a synergy between logic programming and Boltzmann samplers, arXiv preprint arXiv:1612.07682 [cs.LO], 2016-2017.
Programs
-
Mathematica
L[0, ] = 0; L[n, m_] := L[n, m] = Sum[L[k, m]*L[n-k-1, m], {k, 0, n-1}] + L[n-1, m+1] + Boole[m >= n]; a[n_] := L[n, 0]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, May 23 2017 *)
Formula
L(0,m) = 0.
L(n+1,m) = (Sum_{k=0..n} L(k,m)*L(n-k,m)) + L(n,m+1) + [m >= n+1], where [p(n,m)] = 1 if p(n,m) is true and [p(n,m)] = 0 if p(n,m) is false then one considers the sequence (L(n,0)).
Comments