cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275090 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (0,-2) (-1,-2) or (-2,-1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 2, 2, 3, 14, 5, 6, 36, 81, 14, 12, 96, 192, 486, 41, 24, 288, 508, 1024, 2916, 122, 48, 864, 1680, 3088, 5440, 17496, 365, 96, 2592, 5304, 12816, 18440, 29120, 104976, 1094, 192, 7776, 17184, 53132, 87924, 111900, 155904, 629856, 3281, 384, 23328, 54484
Offset: 1

Views

Author

R. H. Hardin, Jul 16 2016

Keywords

Comments

Table starts
....1........2........3.........6.........12..........24............48
....2.......14.......36........96........288.........864..........2592
....5.......81......192.......508.......1680........5304.........17184
...14......486.....1024......3088......12816.......53132........232156
...41.....2916.....5440.....18440......87924......510680.......2934756
..122....17496....29120....111900.....647648.....5038428......38872396
..365...104976...155904....675600....4706400....48675088.....512150588
.1094...629856...834176...4094240...34281472...477786368....6767371752
.3281..3779136..4463424..24794560..248629316..4669603380...89090043684
.9842.22674816.23883904.150165020.1807849760.45596095332.1174911360788

Examples

			Some solutions for n=4 k=4
..0..1..1..2. .0..1..2..0. .0..1..2..0. .0..0..1..2. .0..1..2..0
..1..0..2..2. .0..2..2..0. .0..0..1..2. .0..0..1..2. .0..1..1..2
..1..1..0..2. .0..2..2..1. .1..2..2..1. .0..1..1..2. .1..1..2..0
..1..2..2..0. .0..1..1..0. .1..2..2..0. .0..2..1..0. .1..1..0..0
		

Crossrefs

Column 1 is A007051(n-1).
Row 1 is A003945(n-2).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 6*a(n-1) for n>3
k=3: [order 9] for n>10
k=4: [order 14] for n>15
k=5: [order 27] for n>28
k=6: [order 64] for n>66
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>3
n=2: a(n) = 3*a(n-1) for n>4
n=3: [order 36] for n>38
n=4: [order 84] for n>88