A275090 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (0,-2) (-1,-2) or (-2,-1) and new values introduced in order 0..2.
1, 2, 2, 3, 14, 5, 6, 36, 81, 14, 12, 96, 192, 486, 41, 24, 288, 508, 1024, 2916, 122, 48, 864, 1680, 3088, 5440, 17496, 365, 96, 2592, 5304, 12816, 18440, 29120, 104976, 1094, 192, 7776, 17184, 53132, 87924, 111900, 155904, 629856, 3281, 384, 23328, 54484
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..1..2. .0..1..2..0. .0..1..2..0. .0..0..1..2. .0..1..2..0 ..1..0..2..2. .0..2..2..0. .0..0..1..2. .0..0..1..2. .0..1..1..2 ..1..1..0..2. .0..2..2..1. .1..2..2..1. .0..1..1..2. .1..1..2..0 ..1..2..2..0. .0..1..1..0. .1..2..2..0. .0..2..1..0. .1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..336
Formula
Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 6*a(n-1) for n>3
k=3: [order 9] for n>10
k=4: [order 14] for n>15
k=5: [order 27] for n>28
k=6: [order 64] for n>66
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>3
n=2: a(n) = 3*a(n-1) for n>4
n=3: [order 36] for n>38
n=4: [order 84] for n>88
Comments