This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275098 #7 Jul 17 2020 10:24:52 %S A275098 1,1,257,1699300,112660505345,44687884101953126, %T A275098 76502602935955053437072,451167428778794282789329512425, %U A275098 7771744024861563765933540267436016385,344735749788852590196707169431958672823413322,35650419033178479865362827431736721104304210986866382 %N A275098 Number of set partitions of [9*n] such that within each block the numbers of elements from all residue classes modulo 9 are equal. %H A275098 Alois P. Heinz, <a href="/A275098/b275098.txt">Table of n, a(n) for n = 0..82</a> %H A275098 J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/bell.html">Extended Bell and Stirling Numbers From Hypergeometric Exponentiation</a>, J. Integer Seqs. Vol. 4 (2001), #01.1.4. %F A275098 Sum_{n>=0} a(n) * x^n / (n!)^9 = exp(Sum_{n>=1} x^n / (n!)^9). - _Ilya Gutkovskiy_, Jul 17 2020 %p A275098 a:= proc(n) option remember; `if`(n=0, 1, add( %p A275098 binomial(n, j)^9*(n-j)*a(j), j=0..n-1)/n) %p A275098 end: %p A275098 seq(a(n), n=0..12); %Y A275098 Column k=9 of A275043. %K A275098 nonn %O A275098 0,3 %A A275098 _Alois P. Heinz_, Jul 16 2016