This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275099 #12 Jun 27 2022 07:54:40 %S A275099 1,1,513,10136746,2672797504001,5260857687009765626, %T A275099 53531132944198868710856802,2185249026716732313958375321948613, %U A275099 297263694975439941710846391262298377605633,116941828532092016226313310933885429108622288425362 %N A275099 Number of set partitions of [10*n] such that within each block the numbers of elements from all residue classes modulo 10 are equal. %H A275099 Alois P. Heinz, <a href="/A275099/b275099.txt">Table of n, a(n) for n = 0..75</a> %H A275099 J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/bell.html">Extended Bell and Stirling Numbers From Hypergeometric Exponentiation</a>, J. Integer Seqs. Vol. 4 (2001), #01.1.4. %F A275099 Sum_{n>=0} a(n) * x^n / (n!)^10 = exp(Sum_{n>=1} x^n / (n!)^10). - _Ilya Gutkovskiy_, Jul 17 2020 %p A275099 a:= proc(n) option remember; `if`(n=0, 1, add( %p A275099 binomial(n, j)^10*(n-j)*a(j), j=0..n-1)/n) %p A275099 end: %p A275099 seq(a(n), n=0..12); %t A275099 a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n, j]^10*(n-j)*a[j], {j, 0, n-1}]/n]; %t A275099 Table[a[n], {n, 0, 12}] (* _Jean-François Alcover_, Jun 27 2022, after _Alois P. Heinz_ *) %Y A275099 Column k=10 of A275043. %K A275099 nonn %O A275099 0,3 %A A275099 _Alois P. Heinz_, Jul 16 2016