cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275101 Number of set partitions of [4*n] such that within each block the numbers of elements from all residue classes modulo n are equal for n>0, a(0)=1.

This page as a plain text file.
%I A275101 #9 Apr 30 2022 12:40:56
%S A275101 1,15,131,1613,25097,461105,9483041,209175233,4802367617,112660505345,
%T A275101 2672797504001,63775070743553,1526140298561537,36573850636201985,
%U A275101 877130337148149761,21043423870122115073,504949726500343545857,12117684104978986369025
%N A275101 Number of set partitions of [4*n] such that within each block the numbers of elements from all residue classes modulo n are equal for n>0, a(0)=1.
%H A275101 Alois P. Heinz, <a href="/A275101/b275101.txt">Table of n, a(n) for n = 0..725</a>
%H A275101 J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/bell.html">Extended Bell and Stirling Numbers From Hypergeometric Exponentiation</a>, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
%H A275101 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (47,-718,4416,-10656,6912).
%F A275101 G.f.: -(14112*x^5-12240*x^4+1810*x^3+144*x^2-32*x+1) / ((x-1) *(6*x-1) *(24*x-1) *(12*x-1) *(4*x-1)).
%t A275101 LinearRecurrence[{47,-718,4416,-10656,6912},{1,15,131,1613,25097,461105},20] (* _Harvey P. Dale_, Apr 30 2022 *)
%Y A275101 Row n=4 of A275043.
%K A275101 nonn,easy
%O A275101 0,2
%A A275101 _Alois P. Heinz_, Jul 16 2016