cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275102 Number of set partitions of [5*n] such that within each block the numbers of elements from all residue classes modulo n are equal for n>0, a(0)=1.

This page as a plain text file.
%I A275102 #4 Jul 16 2016 13:35:34
%S A275102 1,52,1496,69026,4383626,350813126,33056715626,3464129078126,
%T A275102 386652630390626,44687884101953126,5260857687009765626,
%U A275102 625229219690048828126,74663901894300244140626,8937876284201001220703126,1071238363160070006103515626,128470217809820900030517578126
%N A275102 Number of set partitions of [5*n] such that within each block the numbers of elements from all residue classes modulo n are equal for n>0, a(0)=1.
%H A275102 Alois P. Heinz, <a href="/A275102/b275102.txt">Table of n, a(n) for n = 0..481</a>
%H A275102 J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/bell.html">Extended Bell and Stirling Numbers From Hypergeometric Exponentiation</a>, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
%F A275102 G.f.: -(685800000*x^7 -675420000*x^6 +136905500*x^5 -8043550*x^4 +17550*x^3 +9249*x^2 -194*x+1) / ((x-1) *(30*x-1) *(5*x-1) *(60*x-1) *(10*x-1) *(120*x-1) *(20*x-1)).
%Y A275102 Row n=5 of A275043.
%K A275102 nonn,easy
%O A275102 0,2
%A A275102 _Alois P. Heinz_, Jul 16 2016