A275110 Decimal expansion of the sum of the alternating series of reciprocals of composite numbers with distinct prime factors.
1, 1, 6, 5, 9, 1, 0, 2, 4, 8, 4
Offset: 0
Examples
0.11659102484... From _Jon E. Schoenfield_, Apr 19 2018: (Start) For b = 3..23, the table below lists the minimum and maximum values of the smoothed partial sum S'(j) (see Comments) among values of j such that 1/t(j) is an odd number in the interval [2^b, 2^(b+1)]. (The table begins at b=3 because the first odd denominator in the alternating sum is A024619(5) = 15, which lies in the interval [2^3, 2^4].) . b min S'(j) (1/t(j) odd) max S'(j) (1/t(j) odd) == ======================= ======================= 3 0.111904761904761904... 0.111904761904761904... 4 0.115873015873015873... 0.115873015873015873... 5 0.116751763887986798... 0.116780441780441780... 6 0.116515193298484059... 0.116521345165903716... 7 0.116576739754580331... 0.116579123025777238... 8 0.116593064475078642... 0.116593574635271689... 9 0.116589740175207247... 0.116589805144898644... 10 0.116590699983114246... 0.116590715183253815... 11 0.116590952081202610... 0.116590954393007789... 12 0.116591012248587507... 0.116591013407441019... 13 0.116591027701733147... 0.116591027880912807... 14 0.116591024064904443... 0.116591024080256316... 15 0.116591025004372396... 0.116591025007229633... 16 0.116591024772646678... 0.116591024773252190... 17 0.116591024831104914... 0.116591024831253967... 18 0.116591024845789528... 0.116591024845809974... 19 0.116591024842154904... 0.116591024842161473... 20 0.116591024841250054... 0.116591024841250922... 21 0.116591024841022776... 0.116591024841022992... 22 0.116591024840966103... 0.116591024840966133... 23 0.116591024840980341... 0.116591024840980345... 24 0.116591024840976791... 0.116591024840976792... (End)
Programs
-
PARI
approx(lim)=my(s=0.,r=1,t); forcomposite(n=6,lim, if(ispower(n,,&t) && isprime(t), next); s += r/n; r=-r); t=floor(lim)+1; if(isprime(t), t++); t=s+r/t; [min(t,s), max(t,s)] \\ Gives lower and upper bounds \\ Charles R Greathouse IV, Jul 31 2016
-
Sage
composites = (i for i in NN if i>3 and not i.is_prime() and not i.is_prime_power()) s = RLF(0); s RealField(110)(s) for i in range(0,50000000): s += (-1)^i / next(composites) print(s) # Terry D. Grant, Aug 01 2016
Formula
Sum_{k>=1} (-1)^(k+1)/A024619(k) = 1/6 - 1/10 + 1/12 - 1/14 + 1/15 - 1/18 + ...
Extensions
2 more digits from Charles R Greathouse IV, Aug 02 2016
Comments