This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275118 #17 May 05 2024 08:57:04 %S A275118 5,11,13,181,1523,1741,2521,19531,24421,29789,76543,108529,489061, %T A275118 880301,1769069,6811741 %N A275118 Split primes p such that prime P lying above p is a Wieferich place of K (with discriminant D_K), for some imaginary quadratic field K of class number 1. %H A275118 D. S. Dummit, D. Ford, H. Kisilevsky, and J. W. Sands, <a href="https://doi.org/10.1016/S0022-314X(05)80027-7">Computation of Iwasawa Lambda invariants for imaginary quadratic fields</a>, Journal of Number Theory, Vol. 37, No. 1 (1991), 100-121. %H A275118 Á. Lozano-Robledo, <a href="http://dx.doi.org/10.1016/j.jnt.2009.10.013">Bernoulli-Hurwitz numbers, Wieferich primes and Galois representations</a>, Journal of Number Theory, Vol. 130, No. 3 (2010), 539-558. See table 2 on page 555. %o A275118 (Sage) %o A275118 def is_A275118(k): %o A275118 if not Integer(k).is_prime(): return False %o A275118 for D in [1, 2, 3, 7, 11, 19, 43, 67, 163]: %o A275118 fct = QuadraticField(-D).ideal(k).factor() %o A275118 if len(fct)==2: %o A275118 pi = fct[1][0].gens_reduced()[0] %o A275118 if (pi^(k-1) - 1).valuation(fct[0][0]) > 1: return True %o A275118 return False %o A275118 print([k for k in range(10^7) if is_A275118(k)]) # _Robin Visser_, Apr 26 2024 %Y A275118 Cf. A239902. %K A275118 nonn,more %O A275118 1,1 %A A275118 _Felix Fröhlich_, Jul 18 2016 %E A275118 a(11)-a(16) from _Robin Visser_, Apr 26 2024