This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275122 #28 Oct 14 2019 01:28:23 %S A275122 1,1,1,1,1,1,1,1,1,2,1,2,4,4,2,1,4,7,4,1,2,4,4,2,1,2,1,1,3,3,1,3,9,12, %T A275122 9,3,3,12,24,24,12,3,1,9,24,31,24,9,1,3,12,24,24,12,3,3,9,12,9,3,1,3, %U A275122 3,1 %N A275122 Pascal's hexagonal pyramid, read by slices, with each slice read by rows. %C A275122 Each layer is a hexagon of numbers. %C A275122 Every cell has 7 neighbors: itself and the 6 around it. %C A275122 The sum of the values of the neighbors of a cell in one layer is the value of that cell in the next. %C A275122 Layer 0: %C A275122 1 %C A275122 Layer 1: %C A275122 1 1 %C A275122 1 1 1 %C A275122 1 1 %C A275122 Layer 2: %C A275122 1 2 1 %C A275122 2 4 4 2 %C A275122 1 4 7 4 1 %C A275122 2 4 4 2 %C A275122 1 2 1 %C A275122 Layer 3: %C A275122 1 3 3 1 %C A275122 . %C A275122 3 9 12 9 3 %C A275122 . %C A275122 3 12 24 24 12 3 %C A275122 . %C A275122 1 9 24 31 24 9 1 %C A275122 . %C A275122 3 12 24 24 12 3 %C A275122 . %C A275122 3 9 12 9 3 %C A275122 . %C A275122 1 3 3 1 %C A275122 etc. %H A275122 Aresh Pourkavoos, <a href="/A275122/b275122.txt">Table of n, a(n) for n = 1..10648</a> %H A275122 Wikipedia, <a href="https://en.wikipedia.org/wiki/N-flake#Hexaflake">Hexaflake</a> %F A275122 Odd terms in layer x, where x is 1 less than a power of 2, form a hexaflake (conjectured). %e A275122 Layer 0 is a single 1, so a(1) = 1. %e A275122 Layer 1 is a filled hexagon of seven 1's, so a(2) through a(8) = 1. %e A275122 The numbers in the top row of Layer 2, "1 2 1", become terms a(9) through a(11). %o A275122 (Python) %o A275122 import numpy as np %o A275122 # This is used for the terms[] array %o A275122 numLayers = 22 %o A275122 # Number of layers that you want to generate %o A275122 # Number of terms = numLayers^3 %o A275122 width = numLayers*2 %o A275122 # Width and height of the terms[] array %o A275122 neighbors = [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [2, 1], [2, 2]] %o A275122 # Neighbors of terms that are added together %o A275122 terms = np.zeros((numLayers, width, width)) %o A275122 # Initialize terms[] array with specified dimensions and fill it with zeros %o A275122 terms[0][0][0] = 1 %o A275122 # Place a single 1 in layer 0 %o A275122 for l in range(1, numLayers): %o A275122 for x in range(width): %o A275122 for y in range(width): %o A275122 for n in neighbors: %o A275122 terms[l][x][y] += terms[l-1][x-n[0]][y-n[1]] %o A275122 # Calculate terms %o A275122 seq = terms.flatten().tolist() %o A275122 # List containing all terms in array %o A275122 while 0 in seq: %o A275122 seq.remove(0) %o A275122 # Remove zeros from array %o A275122 for s in range(len(seq)): %o A275122 seq[s] = int(seq[s]) %o A275122 # Turn all terms from floats to integers %o A275122 final = "" %o A275122 for s in range(len(seq)): %o A275122 final += str(s+1)+" "+str(seq[s])+"\n" %o A275122 # Put the terms into a single string in b-file format %o A275122 bfile = open("b275122.txt", "w") %o A275122 bfile.write(final) %o A275122 bfile.close() %o A275122 # Write this string to the b-file %Y A275122 Cf. A046816, A086754. %K A275122 nonn,look %O A275122 1,10 %A A275122 _Aresh Pourkavoos_, Jul 18 2016