A275124 Multiples of 5 where Pisano periods of Fibonacci numbers A001175 and Lucas numbers A106291 agree.
55, 110, 155, 165, 205, 220, 305, 310, 330, 355, 385, 410, 440, 465, 495, 505, 605, 610, 615, 620, 655, 660, 710, 715, 755, 770, 820, 880, 905, 915, 930, 935, 955, 990, 1010, 1045, 1065, 1085, 1155, 1205, 1210, 1220, 1230, 1240, 1255, 1265, 1310, 1320, 1355, 1395, 1420, 1430, 1435, 1485, 1510, 1515, 1540, 1555, 1595, 1640, 1655, 1705, 1760, 1810, 1815, 1830
Offset: 1
Keywords
Examples
55 is the first multiple of 5 where the Pisano period (Fibonacci) of n = 55 and the Pisano period (Lucas) of n = 55 agree (this is in this case 20).
Links
- Patrick Flanagan, Marc S. Renault, and Josh Updike, Symmetries of Fibonacci Points, Mod m, Fibonacci Quart. 53 (2015), no. 1, 34-41. See p. 7. (Is this the same sequence?)
Programs
-
JavaScript
let bases = [], basesd = [], baselimit = 2000; for (let base = 2; base <= baselimit; base++) { let fibs = [1 % base,1 % base], lucas = [2 % base,1 % base], repeatingf = false, repeatingl = false; while (!repeatingf) { fibs.push((fibs[fibs.length - 2] + fibs[fibs.length - 1]) % base); if (1 == fibs[fibs.length - 2] && 0 == fibs[fibs.length - 1]) repeatingf = true; } while (!repeatingl) { lucas.push((lucas[lucas.length - 2] + lucas[lucas.length - 1]) % base); if ((lucas[0] == (lucas[lucas.length - 2] + lucas[lucas.length - 1]) % base) && (lucas[1] == (lucas[lucas.length - 2] + 2 *lucas[lucas.length - 1]) % base)) repeatingl = true; } if (fibs.length != lucas.length) bases.push(base); } for (let i = 1; i <= baselimit/5; i++) { if (!bases.includes(i * 5)) basesd.push(i * 5); } console.log(basesd.join(','));
Comments