This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A275131 #4 Jul 17 2016 11:01:42 %S A275131 1,2,1,5,4,2,14,16,12,4,41,64,45,36,8,122,256,174,129,108,16,365,1024, %T A275131 675,568,373,324,32,1094,4096,2607,2545,2178,1083,972,64,3281,16384, %U A275131 10077,11092,12423,8321,3148,2916,128,9842,65536,38967,48451,71576,62378 %N A275131 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2. %C A275131 Table starts %C A275131 ...1.....2.....5......14.......41.......122.........365.........1094 %C A275131 ...1.....4....16......64......256......1024........4096........16384 %C A275131 ...2....12....45.....174......675......2607.......10077........38967 %C A275131 ...4....36...129.....568.....2545.....11092.......48451.......212897 %C A275131 ...8...108...373....2178....12423.....71576......412306......2381629 %C A275131 ..16...324..1083....8321....62378....473185.....3586068.....27224209 %C A275131 ..32...972..3148...31772...315021...3146574....31446544....315531602 %C A275131 ..64..2916..9157..121707..1591442..20970214...276145917...3669759648 %C A275131 .128..8748.26623..466252..8024937.139845553..2432426709..42807577389 %C A275131 .256.26244.77372.1783920.40445177.930732169.21443562178.499213473864 %H A275131 R. H. Hardin, <a href="/A275131/b275131.txt">Table of n, a(n) for n = 1..312</a> %F A275131 Empirical for column k: %F A275131 k=1: a(n) = 2*a(n-1) for n>2 %F A275131 k=2: a(n) = 3*a(n-1) for n>2 %F A275131 k=3: [order 9] for n>10 %F A275131 k=4: [order 17] for n>20 %F A275131 k=5: [order 28] for n>31 %F A275131 k=6: [order 67] for n>70 %F A275131 Empirical for row n: %F A275131 n=1: a(n) = 4*a(n-1) -3*a(n-2) %F A275131 n=2: a(n) = 4*a(n-1) %F A275131 n=3: a(n) = 3*a(n-1) +2*a(n-2) +6*a(n-3) -2*a(n-4) -4*a(n-5) for n>6 %F A275131 n=4: [order 9] for n>11 %F A275131 n=5: [order 10] for n>14 %F A275131 n=6: [order 26] for n>28 %F A275131 n=7: [order 53] for n>58 %e A275131 Some solutions for n=4 k=4 %e A275131 ..0..0..1..1. .0..0..1..1. .0..1..2..2. .0..1..1..1. .0..0..1..2 %e A275131 ..2..2..0..2. .2..2..2..0. .2..0..1..0. .2..2..0..0. .1..2..0..1 %e A275131 ..1..1..1..1. .0..0..1..2. .1..2..2..2. .1..1..1..2. .0..1..2..2 %e A275131 ..0..0..0..0. .2..2..0..0. .0..1..1..1. .2..2..0..1. .2..0..0..1 %Y A275131 Column 1 is A000079(n-2). %Y A275131 Column 2 is A003946(n-1). %Y A275131 Row 1 is A007051(n-1). %Y A275131 Row 2 is A000302(n-1). %K A275131 nonn,tabl %O A275131 1,2 %A A275131 _R. H. Hardin_, Jul 17 2016