cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A275133 Number of 4 X n 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.

This page as a plain text file.
%I A275133 #8 Jan 31 2019 19:36:36
%S A275133 4,36,129,568,2545,11092,48451,212897,933888,4092697,17946318,
%T A275133 78700481,345078541,1513083403,6634687537,29092060534,127563508661,
%U A275133 559344843153,2452635533674,10754397617406,47156241405767,206772290181505
%N A275133 Number of 4 X n 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,0) or (-1,1) and new values introduced in order 0..2.
%H A275133 R. H. Hardin, <a href="/A275133/b275133.txt">Table of n, a(n) for n = 1..210</a>
%F A275133 Empirical: a(n) = a(n-1) + 8*a(n-2) + 22*a(n-3) + 36*a(n-4) + 7*a(n-5) - 48*a(n-6) - 4*a(n-7) + 15*a(n-8) - 18*a(n-9) for n>11.
%F A275133 Empirical g.f.: x*(4 + 32*x + 61*x^2 + 63*x^3 + 9*x^4 - 159*x^5 - 201*x^6 + 113*x^7 + 39*x^8 - 104*x^9 + 48*x^10) / (1 - x - 8*x^2 - 22*x^3 - 36*x^4 - 7*x^5 + 48*x^6 + 4*x^7 - 15*x^8 + 18*x^9). - _Colin Barker_, Jan 31 2019
%e A275133 Some solutions for n=4:
%e A275133 ..0..0..1..1. .0..0..1..1. .0..0..1..2. .0..0..1..0. .0..0..0..1
%e A275133 ..2..2..0..0. .2..2..0..0. .1..2..0..0. .2..2..2..2. .1..1..2..0
%e A275133 ..1..1..1..2. .0..1..2..2. .0..1..1..1. .0..0..1..1. .0..0..1..2
%e A275133 ..0..0..0..1. .2..0..0..0. .2..2..0..0. .2..2..0..0. .2..2..0..0
%Y A275133 Row 4 of A275131.
%K A275133 nonn
%O A275133 1,1
%A A275133 _R. H. Hardin_, Jul 17 2016