cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A275137 Number of n X n 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 6, 80, 1088, 9744, 165568, 4055152, 147762240, 7887576208, 624224888096, 72861217834416, 12595738987019680, 3224446583629649792, 1224344356792821362688, 689079095818717776787184
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Diagonal of A275142.

Examples

			Some solutions for n=5
..0..1..2..0..1. .0..1..2..1..0. .0..1..2..1..0. .0..1..2..1..0
..2..0..1..2..1. .2..0..1..0..1. .2..0..1..2..0. .2..0..1..2..1
..1..2..1..2..0. .1..0..1..2..0. .1..2..1..2..0. .1..2..1..2..0
..0..2..0..1..0. .1..2..0..2..0. .1..2..0..1..0. .0..2..0..1..0
..2..1..2..1..2. .1..0..2..1..2. .0..1..2..1..2. .2..0..2..0..2
		

Crossrefs

Cf. A275142.

A275138 Number of n X 4 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

4, 48, 224, 1088, 5248, 25344, 122368, 590848, 2852864, 13774848, 66510848, 321142784, 1550614528, 7487029248, 36150575104, 174550417408, 842803970048, 4069417549824, 19648886079488, 94873214517248, 458088402386944
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Examples

			Some solutions for n=5:
..0..1..2..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..2..0
..2..0..1..2. .0..2..1..0. .0..1..2..0. .2..1..2..0. .2..1..2..0
..1..2..1..2. .1..0..2..0. .1..2..1..2. .2..0..1..2. .1..0..1..0
..0..2..0..1. .1..0..2..1. .1..0..2..0. .0..1..0..2. .0..2..0..2
..1..0..2..0. .2..1..0..2. .2..1..0..1. .1..2..1..2. .2..1..2..1
		

Crossrefs

Column 4 of A275142.

Formula

Empirical: a(n) = 4*a(n-1) + 4*a(n-2) for n>3.
Conjectures from Colin Barker, Jan 31 2019: (Start)
G.f.: 4*x*(1 + 8*x + 4*x^2) / (1 - 4*x - 4*x^2).
a(n) = 2*((2-2*sqrt(2))^n + (2*(1+sqrt(2)))^n) for n>1.
(End)

A275139 Number of n X 5 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

8, 144, 528, 2320, 9744, 41360, 175120, 741904, 3142672, 13312656, 56393232, 238885648, 1011935760, 4286628752, 18158450704, 76920431632, 325840177168, 1380281140368, 5846964738576, 24768140094736, 104919525117456
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Examples

			Some solutions for n=5:
..0..1..2..1..0. .0..1..0..2..1. .0..1..0..1..0. .0..1..2..1..2
..2..1..2..0..1. .1..2..1..0..1. .2..1..2..0..2. .0..1..2..0..1
..2..0..1..2..1. .1..0..2..0..2. .2..0..1..2..1. .2..0..1..0..1
..1..0..1..2..0. .2..1..2..1..0. .1..0..1..2..0. .2..0..1..2..0
..1..2..0..2..0. .2..1..0..2..0. .1..2..0..1..0. .2..1..0..2..0
		

Crossrefs

Column 5 of A275142.

Formula

Empirical: a(n) = 3*a(n-1) + 5*a(n-2) + a(n-3) for n>4.
Conjectures from Colin Barker, Jan 31 2019: (Start)
G.f.: 8*x*(1 + 15*x + 7*x^2 + x^3) / ((1 + x)*(1 - 4*x - x^2)).
a(n) = 8*(2*(-1)^n - (2*((2-sqrt(5))^n - (2+sqrt(5))^n))/sqrt(5)) for n>1.
(End)

A275140 Number of n X 6 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

16, 432, 1216, 6464, 32384, 165568, 841536, 4283968, 21800000, 110943552, 564600384, 2873300800, 14622480448, 74415076672, 378704836160, 1927261993792, 9808004727872, 49913793159488, 254015655387712, 1292707868694336
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Examples

			Some solutions for n=5:
..0..1..2..1..0..2. .0..1..2..0..1..2. .0..1..2..1..0..2. .0..1..2..0..1..0
..2..1..2..0..1..0. .0..1..2..0..1..2. .2..1..2..0..1..2. .0..1..2..0..1..2
..2..0..1..2..1..2. .2..0..1..2..1..2. .1..0..1..2..0..2. .2..0..1..2..0..1
..2..0..1..2..0..1. .1..0..1..2..0..1. .1..2..0..2..0..1. .1..2..1..2..0..1
..0..2..0..1..0..1. .0..2..0..1..2..0. .0..2..0..1..2..1. .2..1..0..1..0..1
		

Crossrefs

Column 6 of A275142.

Formula

Empirical: a(n) = 3*a(n-1) + 10*a(n-2) + 4*a(n-3) - 4*a(n-4) for n>6.
Empirical g.f.: 16*x*(1 + 24*x - 15*x^2 - 98*x^3 - 52*x^4 + 40*x^5) / (1 - 3*x - 10*x^2 - 4*x^3 + 4*x^4). - Colin Barker, Jan 31 2019

A275141 Number of n X 7 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

32, 1296, 2816, 17872, 107472, 663904, 4055152, 24875600, 152379136, 933805200, 5721947536, 35062147296, 214849132208, 1316520434704, 8067189289984, 49432958970960, 302908230284368, 1856117667993184, 11373652262370288
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Examples

			Some solutions for n=5:
..0..1..0..2..1..2..0. .0..1..2..0..1..2..0. .0..1..0..2..0..1..0
..0..2..1..0..2..1..2. .2..0..1..2..0..1..0. .0..2..1..0..1..0..1
..1..2..1..0..2..1..0. .2..0..1..2..0..1..2. .1..0..1..0..2..1..2
..1..0..2..1..2..1..0. .1..0..1..2..0..1..2. .2..0..2..1..2..1..0
..2..1..2..1..0..2..1. .0..1..0..1..0..1..2. .0..1..0..2..0..2..1
		

Crossrefs

Column 7 of A275142.

Formula

Empirical: a(n) = 3*a(n-1) + 18*a(n-2) + 11*a(n-3) - 23*a(n-4) - 4*a(n-5) for n>7.
Empirical g.f.: 16*x*(2 + 75*x - 103*x^2 - 891*x^3 - 647*x^4 + 1172*x^5 + 144*x^6) / (1 - 3*x - 18*x^2 - 11*x^3 + 23*x^4 + 4*x^5). - Colin Barker, Jan 31 2019

A275143 Number of 3 X n 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

5, 36, 80, 224, 528, 1216, 2816, 6544, 15216, 35376, 82240, 191184, 444448, 1033216, 2401936, 5583824, 12980816, 30176736, 70152400, 163084544, 379125568, 881360016, 2048913456, 4763145904, 11072970816, 25741534096, 59841806560
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Examples

			Some solutions for n=5:
..0..1..2..1..2. .0..1..2..1..0. .0..1..0..1..2. .0..1..2..0..2
..2..1..2..0..1. .2..1..2..0..1. .2..1..2..0..1. .2..0..2..0..1
..1..2..1..2..1. .2..0..1..0..1. .2..0..1..2..1. .0..2..1..2..1
		

Crossrefs

Row 3 of A275142.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) for n>5.
Empirical g.f.: x*(5 + 21*x - 18*x^2 + 51*x^3 - 20*x^4) / (1 - 3*x + 2*x^2 - x^3). - Colin Barker, Feb 01 2019

A275144 Number of 4 X n 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

14, 216, 400, 1088, 2320, 6464, 17872, 49792, 139664, 392448, 1102416, 3095808, 8693584, 24414784, 68567696, 192568832, 540817040, 1518847552, 4265581328, 11979603776, 33643929040, 94486756224, 265359817104, 745245528576
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Examples

			Some solutions for n=5:
..0..1..0..1..2. .0..1..0..2..1. .0..1..0..1..2. .0..1..0..2..1
..0..2..1..0..1. .1..2..1..0..1. .1..2..1..0..1. .0..2..1..2..1
..1..0..1..0..2. .1..0..2..0..2. .2..0..2..0..2. .0..2..1..0..2
..2..0..2..1..2. .1..2..0..1..0. .0..1..0..1..0. .2..0..2..0..2
		

Crossrefs

Row 4 of A275142.

Formula

Empirical: a(n) = 5*a(n-1) - 9*a(n-2) + 10*a(n-3) - 6*a(n-4) + a(n-5) for n>9.
Empirical g.f.: 2*x*(7 + 73*x - 277*x^2 + 446*x^3 - 798*x^4 + 969*x^5 - 1132*x^6 + 768*x^7 - 128*x^8) / ((1 - x)*(1 - 4*x + 5*x^2 - 5*x^3 + x^4)). - Colin Barker, Feb 01 2019

A275145 Number of 5Xn 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

41, 1296, 2000, 5248, 9744, 32384, 107472, 362176, 1220752, 4108688, 13848016, 46763600, 158042960, 534108640, 1804746272, 6098041456, 20605419360, 69627945984, 235280517632, 795033992240, 2686484835680, 9077858469008
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Row 5 of A275142.

Examples

			Some solutions for n=5
..0..1..2..1..0. .0..1..0..1..0. .0..1..0..1..2. .0..1..0..2..1
..0..1..2..0..1. .0..2..1..0..1. .0..2..1..2..1. .0..2..1..0..2
..2..0..1..2..0. .0..2..1..0..2. .1..2..1..0..2. .1..0..2..0..2
..1..0..1..2..0. .1..0..2..0..2. .1..0..2..1..0. .2..1..2..1..0
..1..2..0..2..0. .0..1..2..1..0. .2..1..2..1..0. .0..2..0..2..0
		

Crossrefs

Cf. A275142.

Formula

Empirical: a(n) = 8*a(n-1) -27*a(n-2) +56*a(n-3) -75*a(n-4) +61*a(n-5) -28*a(n-6) +7*a(n-7) -a(n-8) for n>12

A275146 Number of 6Xn 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

122, 7776, 10000, 25344, 41360, 165568, 663904, 2695808, 10930304, 44604864, 182448928, 745425056, 3044211024, 12443779056, 50916573248, 208404032016, 852924441248, 3490340288512, 14283233460800, 58452748415536
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Row 6 of A275142.

Examples

			Some solutions for n=5
..0..1..2..0..2. .0..1..0..2..0. .0..1..0..1..2. .0..1..2..0..2
..2..0..1..2..0. .0..2..1..0..2. .0..2..1..2..1. .2..0..2..0..1
..1..2..1..2..0. .1..2..1..0..2. .1..0..1..0..2. .1..0..1..2..1
..0..2..0..1..0. .1..0..2..1..2. .1..0..2..1..0. .1..2..0..1..0
..0..1..2..0..2. .2..0..2..1..0. .1..0..2..1..0. .1..2..0..1..2
..0..2..1..0..1. .0..2..0..2..1. .0..2..0..2..0. .2..1..2..0..1
		

Crossrefs

Cf. A275142.

Formula

Empirical: a(n) = 13*a(n-1) -77*a(n-2) +286*a(n-3) -736*a(n-4) +1351*a(n-5) -1787*a(n-6) +1716*a(n-7) -1217*a(n-8) +652*a(n-9) -265*a(n-10) +78*a(n-11) -14*a(n-12) +a(n-13) for n>18

A275147 Number of 7Xn 0..2 arrays with no element equal to any value at offset (-2,-2) (-1,-2) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

365, 46656, 50000, 122368, 175120, 841536, 4055152, 19906560, 98050624, 485275472, 2393975472, 11827067056, 58618143280, 290834622960, 1442223151168, 7149923428256, 35460798018688, 175959368070992, 873276392285488
Offset: 1

Views

Author

R. H. Hardin, Jul 17 2016

Keywords

Comments

Row 7 of A275142.

Examples

			Some solutions for n=5
..0..1..0..2..1. .0..1..0..1..0. .0..1..0..1..2. .0..1..0..1..0
..1..2..1..0..1. .0..2..1..0..1. .1..2..1..0..2. .0..1..2..0..1
..2..0..2..0..2. .0..2..1..0..2. .1..0..2..0..2. .2..1..2..0..1
..2..1..0..1..0. .1..0..2..1..2. .2..1..2..1..0. .2..0..1..0..1
..0..1..0..2..1. .1..0..2..1..0. .0..1..0..2..1. .1..2..1..2..0
..0..2..1..2..1. .2..1..2..1..0. .0..2..1..0..1. .0..2..0..1..2
..1..0..2..0..2. .2..1..0..2..1. .2..0..1..0..2. .1..0..2..1..2
		

Crossrefs

Cf. A275142.

Formula

Empirical: a(n) = 21*a(n-1) -209*a(n-2) +1330*a(n-3) -6059*a(n-4) +20839*a(n-5) -55739*a(n-6) +118287*a(n-7) -202495*a(n-8) +284119*a(n-9) -331806*a(n-10) +326718*a(n-11) -273224*a(n-12) +193798*a(n-13) -115270*a(n-14) +56258*a(n-15) -21837*a(n-16) +6481*a(n-17) -1404*a(n-18) +210*a(n-19) -20*a(n-20) +a(n-21) for n>27
Showing 1-10 of 10 results.